

MB-Lite+ User’s Guide i

Delft University of Technology
Faculty of Electrical Engineering,
 Mathematics and Computer Science
Department Microelectronics and Computer Engineering
Circuits & Systems Group

MB - Lite +
User Guide

Version 12.1.2

H.J. Lincklaen Arriëns, BSc.
April, 2012.

ii MB-Lite+ User’s Guide

MB-Lite+ User Guide
© H.J. Lincklaen Arriëns 2010-2012

The author assumes no responsibility whatsoever for use of the software by other parties, and makes no
guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
The software is free for non-commercial use. Acknowledgement is appreciated.
Commercial use is strictly prohibited, unless a written consent has been obtained from the author.

MB-Lite+ User’s Guide iii

Table of Contents

1 Preface ... 1
2 Introduction ... 2

2.1 RISC Processors .. 2
2.2 From MicroBlaze to MB-Lite + ... 2
2.3 Architecture .. 3
2.4 Memory-mapped I/O ... 3

2.4.1 Adapters for Asynchronous and Synchronous I/O .. 3
2.4.2 Wishbone Interconnection Architecture and Wishbone adapter 4
2.4.3 Multiple Slaves ... 4

2.5 Fast Simplex Link (FSL) I/O .. 4
2.6 The Distribution Package .. 5

3 Hardware Architecture ... 6
3.1 MB-Lite+ Instruction Set .. 6

3.1.1 Memory architecture .. 7
3.1.2 Data Alignment .. 9

4 Hardware Implementation .. 10
4.1 Core Configurations ... 10

4.1.1 tumbl .. 10
4.1.2 tumbl_FSL .. 11
4.1.3 tumbl_JTAG ... 11
4.1.4 tumbl_JTAG_FSL .. 11
4.1.5 VHDL entity/architecture/ component.. 11

4.2 ‘internal’ Instruction and Data Memory ... 12
4.3 Memory I/O Extensions .. 13

4.3.1 Timing Relations .. 13
4.3.2 Memory Map Selector .. 16
4.3.3 Async/Sync Adapter ... 17
4.3.4 Master-Wishbone Adapter ... 18
4.3.5 Pulse Extender ... 19

4.4 FSL ports and signals ... 20
4.5 JTAG ... 21
4.6 A System Controller ... 23

5 SoC Setup ... 24
6 Programming the MB-Lite+ ... 25

6.1 Simple Disassembler ... 25
7 Basis SystemC Model .. 26
8 The MB-Lite+ Package ... 28

8.1 Hierarchy .. 28

iv MB-Lite+ User’s Guide

8.1.1 Naming conventions used in the vhdl-files ... 28
9 Example Designs .. 29

9.1 Hello .. 29
9.2 SW Test ... 29
9.3 Integer-DCT with FSL ... 29
9.4 Memory Mapped Slaves and Slave Emulators .. 29

10 What’s next? .. 30
11 References ... 31
Appendix ... 32

A.1 Installation and software requirements .. 32
A.2 Contents of the release package .. 33
A.3 Simulation and Synthesis setup .. 41

MB-Lite+ User’s Guide 1

1 Preface

This document describes the implementation (VHDL code and more) of a 32-bit, Xilinx MicroBlaze
derived soft-core processor. The kick-off for this implementation was in fact given by Tamar
Kranenburg’s MB-Lite design obtainable from the OpenCores site [MB-Lite]. Except from bug fixes, it
also supports Fast Simplex Link I/O ports and the possibility to be JTAG programmable (and
readable).
Several designs have already proved its usefulness.
The most recent tests have been performed on a Windows 7 Ultimate PC with Cygwin (1.7.9-1),
Mentor Graphics’ ModelSim SE-64 v10.0c, Synopsys’ Synplify Premier F-2011.09-SP1-1 and
Xilinx’ ISE Design Suite 13.2.

All code and files described in this document are available as a .zip-file from our site.

This User Guide is organized as follows.
First, an overview is given of the processor’s setup, instruction set, data handling and memory space.
Next, more detail is provided about the hardware and the software for this particular implementation,
after which some debugging possibilities are mentioned. Finally, in the Appendix a detailed description
can be found of all individual files in the release package.

2 MB-Lite+ User’s Guide

2 Introduction

One of the very popular 32-bit microprocessors nowadays is the MicroBlaze: a 32-bit RISC processor,
for use in FPGA designs [MicroBlaze]. The MicroBlaze has been designed by Xilinx., Inc. and is
distributed as part of their Embedded Development Kit (EDK in DesignSuite and WebPack).

2.1 RISC Processors
RISC, or Reduced Instruction Set Computer, is a term that is conventionally used to describe a type of
microprocessor architecture that employs a small but highly-optimized set of instructions, rather than
the large set of more specialized instructions often found in other types of architectures. This other
type of processor is traditionally referred to as CISC, or Complex Instruction Set Computer.
Early RISC processors emerged in the late 1970s and early 1980s, and the basic design architecture of
all RISC processors has generally followed the characteristics that came from those early research
projects and which can be summarized as follows:
• One instruction per clock cycle execution time: RISC processors have a CPI (clock per instruction)

of one cycle, due to the optimization of each instruction on the CPU. To allow for high clock
frequencies, pipelining is used. This technique allows each instruction to be processed in a set
number of stages that are processed in parallel. This in turn allows for the simultaneous execution
of a number of different instructions, each instruction being at a different stage in the pipeline.

• Load/Store machine with a large number of internal registers: the RISC design philosophy
typically uses a relatively large number (often 32) of internal registers. Most instructions operate
on these registers, with access to memory made using a very limited set of Load and Store
instructions. This reduces the need for continuous access to usually slower memory for loading
and storing intermediate data.

• Separate Data Memory and Instruction Memory access paths: different stages of the pipeline
perform simultaneous accesses to memory.

2.2 From MicroBlaze to MB-Lite +
The MicroBlaze is a 32-bit RISC machine that follows the classic RISC architecture described above.
It is a load/store machine with 32 general purpose registers. All instructions are 32-bits wide and most
of them execute in a single clock cycle.
However, the processor is designed specifically for Xilinx FPGAs and is consequently highly optimized
for their FPGA circuits. The MicroBlaze is distributed with the Xilinx Embedded Development Kit
(EDK) as a parametric netlist, and although the HDL source code can be obtained from Xilinx at
additional costs, it is not to be distributed freely.
Several Microblaze inspired processors are available as open source projects, like e.g. the aeMB and
the Openfire, but neither of them did exactly what we were looking for.
Therefore, one of our MSc students, Tamar Kranenburg, recently developed a vhdl version with only
the features that we really need to start with. It has been named the MB-Lite and the code can be
obtained freely from the OpenCores site [MB-Lite].

Here, we present a revised and extended version of the MB-Lite, called the MB-Lite+ (with internal
codename −and often referred to from now on as− ‘tumbl’).

Except from repairing the bugs that were present in the MB-Lite, the MB-Lite+ features

MB-Lite+ User’s Guide 3

• a slightly different approach for connecting I/O,

• the possibility to connect and address Fast Simplex Link (FSL) Masters and/or FSL Slaves,

• the possibility to be programmed by means of JTAG ports,

• separate code and data to be stored in Instruction and Data Memory,

• C, IE and FSL flags implemented in the MSR register.

Internally, nearly all VHDL code has in fact been redesigned such that all control and registered
signals are contained in a separate entity/architecture.

2.3 Architecture
Like the original MicroBlaze, the MB-Lite+ uses a pipelined architecture. Most of the instructions
take only 1 clock cycle, except for the branch- and return-from-subroutine instructions. These have to
flush the pipeline to start fresh from a new instruction address. Also, trying to process data that isn’t
available, since not having been read yet by a previous instruction, causes the processor to stall for one
or more cycles. Next to that, I/O devices that need more cycles before responding may stall the
processor too.

For connecting to the outside world, memory mapped I/O or special FSL ports can be used.

2.4 Memory-mapped I/O
Since the MicroBlaze is a 32-bit processor, reserving ranges of memory address space for I/O is
generally no real problem, as the memory address space is usually much larger than the required
space for all memory and I/O devices together.
There are two major advantages of using memory-mapped I/O instead of dedicated ports for I/O. One
of them is that the CPU requires less internal logic and thus will be cheaper, faster, easier to build,
less power hungry and physically smaller, which is according to the basic RISC philosophy.
The other advantage is that, because regular memory instructions are used to address devices, all of
the CPU's addressing modes are available for the I/O as well as the memory, and instructions that
perform an operation directly on a memory operand −loading an operand from a memory location,
storing the result to a memory location, or both- can be used with I/O device registers as well.

In fact, all that is needed is an interface to facilitate communication and data transport between the
processor’s memory bus and the peripheral device.
Clearly, there are several I/O kinds of connection possible. Here, we have chosen for easy connecting to
devices with either asynchronous or synchronous interfaces (i.e. data can be read in the same cycle, or
is just available in the next one), and to devices using the popular Wishbone interface architecture.
Note that, if the intention is to handle devices that may take several processor clock cycles for reading
and/or writing data, the need to be able to stall the processor for one or more clock cycles becomes
obvious.

2.4.1 Adapters for Asynchronous and Synchronous I/O
The MB-Lite+ can communicate with asynchronous, as well as with synchronous devices with the aid
of interconnection adapters. Asynchronous devices are defined here as circuits that, when read, have
their output data available in the same clock cycle as in which the read address is applied. For
synchronous devices, their data is just available after the next rising edge of the clock (so, in the next

http://en.wikipedia.org/wiki/32-bit

4 MB-Lite+ User’s Guide

clock cycle).
With the adapter in the distribution package, it is possible to control the amount of cycles that the
MB-Lite+ outputs remain unchanged (the processor itself is stalled) to cope with the setup time of a
slower device, while with the aid of a pulse extension circuit the processors data can be latched for a
number of cycles for coping with the hold time specified for the device.

2.4.2 Wishbone Interconnection Architecture and Wishbone adapter
The Wishbone bus is a simple scalable bus specification to connect IP blocks [WBSpec]. The main
objective is to use a flexible, robust, easy to understand and technology-independent communication
interface. This bus was initially specified by the Silicore company and is now being further developed
by OpenCores, so the specification is public domain.
As a consequence, many IP blocks have been developed using this type of interface and many are
available. All Wishbone bus data transfers can execute in one clock cycle. It can be configured as an 8,
16 or 32 bit wide bus. All bus cycles use a handshaking protocol between the master and the slave IP
block(s). The architecture of the bus is not defined; it is up to the user/designer to choose one.

From the processor side, no distinction has to exist between ‘real’ memory and a Wishbone I/O device.
Seen from the other side of the bus, everything has to behave like a fully compliant Wishbone master.
This can be accomplished with an appropriate adapter circuit that is responsible for the correct
transfer of data, address values and control signals between the MB-Lite+ and the Wishbone
compliant peripherals (slaves) using the specified Wishbone control signals.

2.4.3 Multiple Slaves
If in a design more than one memory mapped slaves are involved, every one of them needs its own
adapter and a private section in memory space.
For Wishbone slaves, that communicate with the processor using a handshake signal called ACK, no a
priori knowledge has to exist about the speed of the slaves. The simple Asynchronous or Synchronous
slaves mentioned above usually don’t have active handshake/feedback signals available, so for such
slaves figures for setup and hold delays should be known beforehand and be translated into integer
numbers of clock cycles.

2.5 Fast Simplex Link (FSL) I/O
Next or instead of memory mapped i/o, the MB-Lite+ can also be equipped with 32 bits wide Fast
Simplex Link (FSL) interfaces ([XAPP529], [DS449]).
These interfaces are divided in FSL-Master and FSL-Slave ports, depending on the direction of the
Data and Control flow: master ports are intended for writing data with the MB-Lite+, slave ports for
reading. It is possible to implement upto 16 FSL_M ports, and also upto 16 FSL_S ports. Since the
FSL channels are dedicated uni-directional point-to-point data streaming interfaces, there is no
connection between FSL_M and FSL_S ports, while there is no requirement that they should be
combined.
Dedicated instructions are provided to directly transfer 32-bit words to or from the internal General
Purpose Registers. Xilinx defined the FSL interfaces to contain a separate bit to indicate whether the
sent/received word is of a control or data type, therby differentiating between blocking data, non-
blocking data, blocking control, and non-blocking control.
For detailed information on the FSL interface, see [DS449] and [XAPP529].

MB-Lite+ User’s Guide 5

2.6 The Distribution Package
In the MBLite_Plus_v12.1(.#) software package (see the Appendix for all details) that can be
downloaded from our web-site http://ens.ewi.tudelft.nl/~huib/vhdl/ all VHDL entity and architecture
descriptions, package files, software utilities, design examples, etc. that are needed to implement a
System-on-Chip are available. Some script-files to ease the generation of (parts of) the design are also
provided.

The design examples are extensively treated in a separate Example Designs Manual, also obtainable
from the same web-site.

In the following sections, more information about the MBLite_Plus_v12.1(.#) software and its use are
presented.

http://ens.ewi.tudelft.nl/~huib/vhdl/

6 MB-Lite+ User’s Guide

3 Hardware Architecture

In this chapter an overview will be given of the MB-Lite+ and, after a short summary of the I/O
possibilities, how to connect it to peripheral circuitry.

3.1 MB-Lite+ Instruction Set
Being a “lite” version of the regularly improved and expanded MicroBlaze, only a subset of the
MicroBlaze’s instruction set can be executed. Table I list the available mnemonic opcodes. See the
Reference Guide [MicroBlaze] for a detailed explanation of each instruction.

Table 1

arithmetic functions:

 ADD, ADDC, ADDK, ADDKC, ADDI, ADDIC, ADDIK, ADDIKC,
 BS, BSI, 1)
 MUL, MULI, 2)
 RSUB, RSUBC, RSUBK, RSUBKC, RSUBI, RSUBIC, RSUBIK, RSUBIKC

logical functions:

 AND, ANDI,
 OR, ORI,
 XOR, XORI,
 ANDN, ANDNI

compare functions: CMP, CMPU

extend instructions:
 IMM
 SEXT8, SEXT16

shift right: SRA, SRC, SRL

unconditional branch
instructions:

 BR, BRD, BRLD, BRA, BRAD, BRALD,
 BRI, BRID, BRLID, BRAI, BRAID

conditional branch
instructions:

 BEQ, BNE, BLT, BLE, BGT, BGE,
 BEQD, BNED, BLTD, BLED, BGTD, BGED,
 BEQI, BNEI, BLTI, BLEI, BGTI, BGEI,
 BEQID, BNEID, BLTID, BLEID, BGTID, BGEID

load and store
instructions:

 LBU, LHU, LW,
 LBUI, LHUI, LWI,
 SB, SH, SW,
 SBI, SHI, SWI

return from interrupt,
subroutine

 RTID, RTSD

special purpose: MFS, MTS (MSR Register only)

FSL instructions:
 GET, GETD,
 PUT, PUTD

1) Barrel Shift instructions either executed by a hardware barrel shifter, or by means of software emulation
 (selectable with the USE_BARREL_g generic and compiler switches).
2) Multiplier instructions either executed by hardware multiplier(s), or by means of software emulation
 (selectable with the USE_HW_MUL_g generic and compiler switches).

MB-Lite+ User’s Guide 7

3.1.1 Memory architecture

The MB-Lite+ is based on a Harvard architecture and thus features separate address- and data-buses
for instruction memory (imem) and data memory (dmem). Both instruction memory and data memory
start at address 0x00000000, while each address refers to a byte-wide memory location. Given the 32-
bit address widths, both memories have a maximum size of 4 GBytes.
Thus, although being a 32-bit machine which addresses and processes 32-bit data units, memory sizes
and addresses are specified in bytes, i.e. the 32-bit instructions are found on addresses on a 4-byte
boundary only, so the program counter’s lsb-value will always be 0, 4, 8, or c (hex).
The same holds true for data memory accesses when addressing 32-bit data.

The actual sizes for both memories can be specified individually in the VHDL descriptions with the aid
of generic variables, with

IMEM_ABITS_g for the number of address bit-lines for the instruction memory, and
DMEM_ABITS_g for the number of address bit-lines for the data memory.

Next to these numbers of bits, provided that not all available data memory space is occupied by the
dmem, the subdivision of this space needs to be specified. This also needs to be done using a generic,
viz. with MEMORY_MAP_g.
This MEMORY_MAP_g should be a one-dimensional array of 32-bit addresses, giving the base addresses
of all external (i.e. external to the core, above dmem) devices, e.g.

MEMORY_MAP_g : memory_map_type := (X"A0000000", X"FFFFFF00");

Should we e.g. have to make a subdivision like:

dmem starting at zero, 16k Byte size (i.e. 14 address bits),
a 1st extended memory part starting at 0x80000000, a 2nd memory part starting at
0xfffffe00 and a 3rd part with its base address at 0xffffffc0, where
this last part is reserved for an 8-bit slave (data bits connected to the least significant bits of
the 32-bit data-bus),

then the VHDL entity at the highest level, i.e. in the testbench will have to look like:

 GENERIC (
 |
 MEMORY_MAP_g : MEMORY_MAP_Type := (X"80000000", X"FFFFFE00", X"FFFFFFC0");
 |

resulting in the memory map given in Table 2.

Be aware that when only one base address has to be specified, positional association as listed above is
not allowed in VHDL. In that case the use of named association will be asked for, i.e.

 MEMORY_MAP_g : MEMORY_MAP_Type := (0 => X"FFFFFE00");

Next to that, again for the case that only one external device has to be connected, the possibility exists
to dedicate the whole external address range to that device (the device’s addresses are replicated
many times) by using a dedicated XMEMB_sel_o selection signal from a tumbl configuration (see
Section 4 and the “hello”-example’s description).

8 MB-Lite+ User’s Guide

Table 2 Byte Addresses 32-bit Boundaries Word Addresses

third claimed memory block,
size 64 Bytes,

(i.e. maximally 16 32-bit registers)
n=3

FFFF_FFFF

FFFF_FFC0

FFFF_FFFC

FFFF_FFC4
FFFF_FFC0

3FFF_FFFF
3FFF_FFFE

3FFF_FFF1
3FFF_FFF0

second claimed memory block,
size (512 − 64) = 448 Bytes

n=2

FFFF_FFBF

FFFF_FE00

FFFF_FFBC
FFFF_FFB8

FFFF_FE04
FFFF_FE00

3FFF_FFEF
3FFF_FFEE
3FFF_FFED

3FFF_FF81
3FFF_FF80

first claimed memory block,
size (2048 M − 512) Bytes

n=1

FFFF_FDFF

8000_0000

FFFF_FDFC
FFFF_FDF8

8000_0004
8000_0000

3FFF_FF7F
3FFF_FF7E
3FFF_FF7D

2000_0001
2000_0000

reserved for internal data memory
total free space 2048 MByte,

of which only 16384 Bytes occupied
(Note: STACK and HEAP defined

in a Makefile)

7FFF_FFFF

0000_0000

7FFF_FFFC

0000_0010
0000_000C
0000_0008
0000_0004
0000_0000

1FFF_FFFF
1FFF_FFFE

0000_0004
0000_0003
0000_0002
0000_0001
0000_0000

…C3 = least significant byte in
 32-bit WORD with base-address …C0
…C2
…C1
…C0
(see next chapter about data alignment)

MB-Lite+ User’s Guide 9

3.1.2 Data Alignment

As mentioned before, the MB-Lite+ is a 32-bit cpu working with 32-bit data (WORDs), but also being
capable of handling 16-bit (HALFWORDs) and 8-bit data (BYTEs) units.
Nevertheless, in all memory accesses to c-data types, pointers, and also the program counter, are
addressing bytes.
Regarding data handling, it is important to know that the MicroBlaze –at least in its early
appearances- uses the Big Endian data format, which means that the most significant byte of an
operand or data unit is stored at the lowest address in memory.
To enable the access of HALFWORDs and BYTEs, a 4-bit ‘sel’ signal can be used to select the
appropriate part in a 32-bit unit. The relationship between addresses, data types and the sel-signal is
shown below.

d31--d0

least significant address nibble 0, 4, 8 or c (sel = “1000”)

least significant address nibble 1, 5, 9 or d (sel = “0100”)

least significant address nibble 2, 6, a or e (sel = “0010”)

least significant address nibble 3, 7, b or f (sel = “0001”)

d31--d24 d23--d16 d15--d8 d7--d0

BYTE alignment in 32-bit data field

least significant address nibble 0, 4, 8 or c (sel = “1100”)

least significant address nibble 2, 6, a or e (sel = “0011”)

d31--d16 d15--d0

HALFWORD alignment in 32-bit data field (2-byte boundaries only)

least significant address nibble 0, 4, 8 or c (sel = “0000”)

WORD alignment on 4-byte boundaries only

10 MB-Lite+ User’s Guide

4 Hardware Implementation

In this chapter an overview will be given of the MB-Lite+ and the interfaces/adapters for connecting it
to peripheral circuitry.

The codename for the VHDL-entity of the core of the MB-Lite+ is decided to be ‘tumbl’ for the most
basic configuration, i.e. only core with instruction and data memory. By adding predefined entities,
this tumbl can be extended such that totally 8 different configurations can be distinguished.

4.1 Core Configurations
4.1.1 tumbl
In its most basis configuration, tumbl, the processor is built using the units (Figure 4.1) indicated as

• fetch fetches the correct instruction from instruction memory,
• decode interprets the instruction,
• exeq executes the instruction,
• mem handles the data to be read from or written to (the) data memory (bus) ,
• gprf General Purpose Register File containing the 32 bit wide registers r0—r31,
• core_ctrl all data flow control and additional registers (also MSR),
• imem and dmem instruction and data memories.

fetch

imem dmemgprf

JTAG_ir_proc

decode

core_ctrl

JTAG_ctrl

exeq mem

 clk_i
 rst_i
halt_i
 int_i

 TCK_i
nTRST_i
 TMS_i
 TDI_i
 TDO_o

XMEMB_o
XMEMB_i

FSL_M_X_i/o FSL_S_X_i/o

Figure 4.1 Block scheme of the a featured tumbl_JTAG_FSL_M_S configuration.

MB-Lite+ User’s Guide 11

4.1.2 tumbl_FSL
This tumbl can be extended with an ‘fsl_sel’ block, which offers the possibility to implement a
tumbl_FSL_M, a tumbl_FSL_S or a tumbl_FSL_M_S, which respectively contain one or more
FSL_Master ports, one or more FSL_Slave ports or one or more FSL_Master and one or more
FSL_Slave ports.

4.1.3 tumbl_JTAG
By adding the JTAG_ctrl and JTAG_ir_proc (instruction processor) to the basic tumbl, the
tumbl_JTAG can be created that opens the possibility to (re)program or read the instruction and/or
data memory from a JTAG interconnection port.

4.1.4 tumbl_JTAG_FSL
Each tumbl_FSL configuration can also be combined with the JTAG circuits.

4.1.5 VHDL entity/architecture/ component
The configurations mentioned above are described in a number of component definitions, so the one
needed for a specific design can be instantiated. In Figure 4.2, all available port connections and signal
names are shown, highlighted parts being optional.
VHDL generics are used for communicating top level choices to lower parts in the hierarchy, while
strongly related signals –usually for bus communication- are combined in VHDL records.

clk_i
rst_i XMEMB_o

XMEMB_sel_o

FSL_M_X_o[P]

FSL_S_X_o[Q]

halt_i XMEMB_i

FSL_M_X_i[P]

FSL_S_X_i[Q]

int_i

done_o

ena
adr
bSel
wre
data

M_Write
M_Data
M_Control

S_Exists
S_Data
S_Control

M_Full

S_Read

32

32

32

4

32

32

clken
data
int

SYNTHESIZE_g
IMEM_ABITS_g
DMEM_ABITS_g
N_FSL_M_g
N_FSL_S_g
USE_HW_MUL_g
USE_BARREL_g

tumbl<_jtag><_fsl<_m><_s>>

N-times

M-times

P = 0 to (-1)
Q = 0 to (-1)

N_FSL_M_g
N_FSL_S_g

TCK_i
nTRST_i
TMS_i
TDI_i
TDO_o

Figure 4.2 Block schemes showing ports and in-
and output signals for a tumbl_JTAG_FSL_M_S
component (highlighted parts are optional, and are
here added to the most basic configuration).

12 MB-Lite+ User’s Guide

4.2 ‘internal’ Instruction and Data Memory

As seen before, the processor core needs ‘internal’ asynchronous instruction and data memory blocks,
the size of which being selectable with generics IMEM_ABITS_g and DMEM_ABITS_g (number of address
bits) respectively. For configurations to be programmable via JTAG ports, a writable IMEM version
will be needed (see Figure 4.3b).
The descriptions of these blocks depend on the implementation platform to be used, viz. FPGA, ASIC,
etc. At the moment of writing this document, code is available for implementations as Xilinx BRAM,
as Faraday ASIC memory, or as automatically inferred memory.

Figure 4.3 Block schemes showing memory blocks, viz. a) simple read only
Instruction Memory (IMEM), b) readable and writable Instruction Memory
(IMEM_WRE), and c) Data Memory (DMEM).

ce_i
adr_i

dat_o

wre_i
dat_i32

32

4

DMEM_ABITS_g

DMEM_ABITS_g

DMEM

cs_i
clk_i

adr_i

dat_o

wre_i
dat_i32

32

4

IMEM_ABITS_g

IMEM_ABITS_g

IMEM_WRE

adr_i dat_o 32

IMEM_ABITS_g

IMEM_ABITS_g

IMEM

b)

c)

a)

MB-Lite+ User’s Guide 13

4.3 Memory I/O Extensions

As mentioned before, memory space above the internal dmem data memory space, can be subdivided
and assigned to memory i/o extensions.

The electrical connections XMEMB_o and XMEMB_i (Figure 4.2) are based on two VHDL data types, viz.
the record definitions given by CORE2DMEMB_Type and DMEMB2CORE_Type in the mbl_Pkg package:

 TYPE CORE2DMEMB_Type IS RECORD
 ena : STD_LOGIC;
 addr : STD_LOGIC_VECTOR (31 DOWNTO 0);
 bSel : STD_LOGIC_VECTOR (3 DOWNTO 0);
 wre : STD_LOGIC;
 data : STD_LOGIC_VECTOR (31 DOWNTO 0);
 END RECORD;

 TYPE DMEMB2CORE_Type IS RECORD
 clken : STD_LOGIC;
 data : STD_LOGIC_VECTOR (31 DOWNTO 0);
 int : STD_LOGIC;
 END RECORD;

The MBLite signals an active memory cycle by raising the ena signal.
If the clken feedback input from the device is high, the processor continues its activities. If this input
is taken low, the processor is halted until the next positive going clk edge after clken becomes high
again. This enables the use of devices that can’t handle the processors speed directly.
The output signal XMEMB_sel_o will be ‘0’ when the internal dmem is addressed, and ‘1’ otherwise.
This will be sufficient in case only one slave has to be incorporated. When more i/o devices are needed,
a memory map selector is needed to control the memory map subdivision and slave addressing.

4.3.1 Timing Relations
In Figures 4.3 and 4.4, timing diagrams are shown with respect to the XMEMB_o and XMEMB_i ports
for a number of different situations.

14 MB-Lite+ User’s Guide

Figure 4.4 Waveform diagrams for writing data a), and b) with extended
data hold time for relatively slow peripheral devices (xmemb_i.clken high in
both cases). In c), the effect of stalling (one clock cycle here) the processor
during the write process by lowering xmemb_i.clken is shown.

b) a)

c)

clk

xmemb_o.addr

xmemb_o.data

xmemb_i.data

xmemb_o.wre

xmemb_o.ena

extended hold time

clk

xmemb_o.addr

xmemb_o.data

xmemb_i.clken

xmemb_o.ena

xmemb_o.wre

MB-Lite+ User’s Guide 15

Figure 4.5 Waveform diagrams for asynchronously reading data a), and
b) reading synchronous data (xmemb_i.clken high in both cases). In c), the
effect of stalling (one clock cycle here) the processor during an async read by
lowering xmemb_i.clken is shown.

b) a)

c)

clk

xmemb_o.addr

xmemb_o.ena

xmemb_o.data

xmemb_i.data

xmemb_o.wre

clk

xmemb_o.addr

xmemb_o.ena

xmemb_o.data

xmemb_i.data

xmemb_i.clken

xmemb_o.wre

16 MB-Lite+ User’s Guide

4.3.2 Memory Map Selector

When more than one i/o devices are needed, the single output signal XMEMB_sel_o can’t address all
slaves, so the need for a memory map selector becomes evident. Figure 4.5 shows the block diagram of
the dmb_selector that is present in the distribution package: this component translates the XMEMB_o
and XMEMB_i signals into DMBA_o and DMBA_i signals that are specific for a particular slave and which
are derived from the generic MEMORY_MAP_g, given at the top level.

DMBA_o and DMBA_i here are array versions (see dmb_ext_Pkg.vhd package file), defined as

 TYPE CORE2XMEMB_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF CORE2DMEMB_Type;
 TYPE XMEMB2CORE_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF DMEMB2CORE_Type;

of the memory extension type mentioned before.

Note that the clock is not part of the record CORE2DMEMB_Type:
for avoiding additional (zero) ‘delays’ in simulations, that may alter the succession of evaluations of
signals, clk_i should be connected directly to the appropriate highest level clock.

Figure 4.6 Block diagram of the memory map selector.

d31 d24.. d23 d16.. d15 d8.. d7 d0..adr:
dat

sel se
l(

3)

se
l(

2)

se
l(

1)

se
l(

0)

clk_i
rst_i

DMBA_o[N]

DMBO_i[N]

32

32

4

4

32

32

32

32

clken
data
int

clken
 data
 int

MEMORY_MAP_g

dmb_selector

N = 1 to

index[0] reserved for dmem
so

MAPSIZE

,
x_dmemb_i[0].ena = ’1’, and

 x_dmemb_i[0].int = ’0’.

N-times

N-times

ena
addr
bSel
wre
data

ena
addr
bSel
wre
data

XMEMB_i
XMEMB_o

XMEMB_sel_i

MB-Lite+ User’s Guide 17

4.3.3 Async/Sync Adapter

The purpose of this block is to synchronize data exchange between tumbl and slave in such a way that
all reading and writing occurs correctly.
By means of the ASYNC_SLAVE_g generic (TRUE or FALSE) the type of slave can be selected, while
SETUP_TICKS_g can be used to stall the processor a number of clock cycles in order to cope with a slow
slave (SETUP_TICKS_g of 1 will cause no delays, larger numbers will). The same value will be used for
writing as well as for reading.

The DMBA_i and DMBA_o ports here are of single CORE2DMEMB_Type and DMEMB2CORE_Type and are
connected to one of the dmb_selector’s array output combinations (Figure 4.7).
Here also, clk_i should be connected directly to the appropriate highest level clock.

The effective width of the slave’s address and data busses have to be passed by means of respectively
the MB_ABITS_g and MB_DBITS_g generics. The data_i port will internally be padded with zeros to
obtain a 32-bit value if necessary.

The component declaration for the dmb_adapter can again be found in the dmb_ext_Pkg.vhd file, as
well of the type definitions for the MB_MST_Ctrl_i and MB_MST_Ctrl_o records:

 TYPE MBL2XMB_Ctrl_Type IS RECORD
 ena : STD_LOGIC;
 bSel : STD_LOGIC_VECTOR (3 DOWNTO 0);
 wre : STD_LOGIC;
 END RECORD;

 TYPE XMB2MBL_Ctrl_Type IS RECORD
 clken : STD_LOGIC;
 int : STD_LOGIC;
 END RECORD;

Figure 4.7 a) Block diagram of the Asynchronous/
Synchronous Data Memory Bus Adapter, and b)
address mapping inside the adapter for an
MB_ABITS_g = 3.

clk_i
rst_i

DMBA_i

DMBO_o

32

4

4

32

MB_ABITS_g

MB_DBITS_g

MB_DBITS_g

32 clken
int

clken
 data
 int

MB_ABITS_g
MB_DBITS_g
ASYNC_SLAVE_g
SETUP_TICKS_g

dmb_adapter
ena
bSel
wre

data_o
addr_o

data_i

MB_MST_Ctrl_o

MB_MST_Ctrl_i

ena
addr
bSel
wre
data

DMBA_i.addr

4

MB_ABITS_g (=3)

dmb_adapter

addr_o

MB_MST_Ctrl_o.bSel

b30

b2

b2b4

b0

b0

b31

b3

b1

b1

b)

a)

18 MB-Lite+ User’s Guide

4.3.4 Master-Wishbone Adapter

To enable communication between the tumbl with a dmb-selector and a Wishbone slave, only a very
simple wishbone_adapter entity/architecture which will act as a Wishbone Master will be needed
(Figure 4.9).

An interconnection scheme with the record_name.signal_name convention used is shown in Figure
4.8, together with waveform diagrams representing read and write actions

The effective width of the slave’s address and data busses have to be passed by means of respectively
the WB_ABITS_g and WB_DBITS_g generics. The data_i port will internally be padded with zeros to
obtain a 32-bit value if necessary.
No information will be needed about the slaves response behavior, since this will be controlled by
means of the slave’s ACK_o signal.

The component declaration for the wishbone_adapter can again be found in the dmb_ext_Pkg.vhd
file, as well as the type definitions of the records it refers to.

Figure 4.8 Wishbone a) SINGLE READ and b) SINGLE WRITE waveform signals.

b) a)

clk_i

addr_o

data_i

WB_Mst_Ctrl_o.we_o

WB_Mst_Ctrl_o.cyc_o

WB_Mst_Ctrl_o.stb_o

WB_Mst_Ctrl_o.ack_i

data_o

clk_i

addr_o

data_i

WB_Mst_Ctrl_o.we_o

WB_Mst_Ctrl_o.cyc_o

WB_Mst_Ctrl_o.stb_o

WB_Mst_Ctrl_o.ack_i

data_o

clk_i

adr_i

dat_o

we_i

cyc_i

stb_i

ack_o

dat_i

clk_i

adr_i

dat_o

we_i

cyc_i

stb_i

ack_o

dat_i

1 12 2

VALID VALID

VALID

VALID

port names of
wishbone_adapter
(master)

port names of
wishbone_adapter
(master)

port names of
wishbone slave

port names of
wishbone slave

MB-Lite+ User’s Guide 19

The WB_MST_Ctrl_o.bSel signal will be needed in case slaves are involved that allow selecting
particular bytes within a larger word (not shown in Figure 4.8).

4.3.5 Pulse Extender

For coping with slave devices that need a certain data hold time (see Figure 4.4b) before it’s data bus
is switched into a 3-state mode, a simple pulse_extender component is available that can be used to
control the amount of hold time, expressed in number of clock cycles, by means of the generic
HOLD_TICKS_g. It’s pulse_i input is expected to be connected to the wre_o signal controlling this
slave, while it’s pulse_o output controls the data bus mode.

Figure 4.9 Block diagram of a Wishbone adapter.
See Figure 4.7b for internal address mapping between
DMBA_i.addr and addr_o.

clk_i
rst_i

DMBA_i

DMBO_o

32

4

4

32

WB_ABITS_g

WB_DBITS_g

WB_DBITS_g

32 ack_i
int_i

clken
 data
 int

WB_ABITS_g
WB_DBITS_g

wishbone_adapter cyc_o
stb_o
sel_o
we_o

data_o
addr_o

data_i

WB_MST_Ctrl_o

WB_MST_Ctrl_i

ena
addr
bSel
wre
data

20 MB-Lite+ User’s Guide

clk_i
rst_i XMEMB_o

XMEMB_sel_o

FSL_M_X_o[P]

FSL_S_X_o[Q]

halt_i XMEMB_i

FSL_M_X_i[P]

FSL_S_X_i[Q]

int_i

done_o

ena
adr
bSel
wre
data

M_Write
M_Data
M_Control

S_Exists
S_Data
S_Control

M_Full

S_Read

32

32

32

4

32

32

clken
data
int

N_FSL_M_g
N_FSL_S_g

N-times

M-times

P = 0 to (-1)
Q = 0 to (-1)

N_FSL_M_g
N_FSL_S_g

TCK_i
nTRST_i
TMS_i
TDI_i
TDO_o

tumbl_jtag_fsl_m_s

4.4 FSL ports and signals

The number of FSL Master and Slave Ports can be determined with the generics N_FSL_M_g and
N_FSL_S_g respectively. Both can be individually chosen from 1 to 16, since there is no necessity to
connect both a Master as well as a Slave port to a certain FSL device. Devices with only a Master
connection or only a Slave connection are allowed, without the burden of having unconnected ports at
the tumbl’s side. It will be only a matter of correctly administrating the several ports and connections
to prevent problems.
Of course, a user may decide to select pairs of Master-Slave FSL ports.

Record types have been defined (in the mbl_Pkg.vhd package file) that separate and combine output
and input signals, viz.

 TYPE CORE2FSL_M_Type IS RECORD
 -- connect M_Clk directly to highest level clock
 M_Write : STD_LOGIC;
 M_Data : STD_LOGIC_VECTOR (31 DOWNTO 0);
 M_Control : STD_LOGIC;
 END RECORD;

 TYPE FSL_M2CORE_Type IS RECORD
 M_Full : STD_LOGIC;
 END RECORD;

 TYPE CORE2FSL_S_Type IS RECORD
 -- connect S_Clk directly to highest level clock
 S_Read : STD_LOGIC;
 END RECORD;

 TYPE FSL_S2CORE_Type IS RECORD
 S_Exists : STD_LOGIC;
 S_Data : STD_LOGIC_VECTOR (31 DOWNTO 0);
 S_Control : STD_LOGIC;
 END RECORD;

Figure 4.9. FSL and JTAG port connections.

MB-Lite+ User’s Guide 21

The FSL_M_X_i/o and FSL_S_X_i/o ports are array types according to

 TYPE CORE2FSL_M_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF CORE2FSL_M_Type;
 TYPE FSL_M2CORE_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF FSL_M2CORE_Type;
 TYPE CORE2FSL_S_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF CORE2FSL_S_Type;
 TYPE FSL_S2CORE_ARRAY_Type IS ARRAY(NATURAL RANGE <>) OF FSL_S2CORE_Type;

4.5 JTAG

It is supposed here, that the reader is familiar with the JTAG protocol.
See Figure 4.9 for the pin names and signal flow directions.

The JTAG Controller used here is 32-bits oriented, e.g. all data and addresses are treated to be 32-bit
quantities. JTAG Instructions are 4-bits wide (LSB first) and are listed in Table 3.

Table 3

Instruction 4-bit code description

JTAG_ON 0000 switch to JTAG Program Mode

JTAG_OFF 0001 switch to RUN Mode

TELL_IDCODE 0010 read back this JTAG’s ID-code (1190AF37 hex) 3)

START_ADDR 0011 set 32-bits start address for reading/writing imem/dmem

READ_IMEM 0100 read 32-bit data from imem at address, and auto-increment address

READ_DMEM 0101 read 32-bit data from dmem at address, and auto-increment address

WRITE_IMEM 0110 write 32-bit data to imem at address, and auto-increment address

WRITE_DMEM 0111 write 32-bit data to dmem at address, and auto-increment address

CLEAR_DMEM 1000 clear dmem pointed to by address, and auto-increment address

BYPASS 1001 pass data unaltered

• JTAG_ON, JTAG_OFF and BYPASS are single instructions, not followed by special data.

• The START_ADDR instruction has to be followed by a 32-bit address value (often 0x00000000).

• WRITE_IMEM and also WRITE_DMEM are issued once, and should be followed by all data to be written
(LSB first, starting from lowest address = start address). Writing stops when a new instruction is
detected by toggling of the TMS_i line.

• Zeroing data memory can be accomplished by issuing a sequence of CLEAR_DMEM instructions.

• Reading from this JTAG implementation itself can be done with TELL_IDCODE, and should result
in a 32-bit (hard coded) ID-code.

3) from left to right: 4 bits Version Number (1), 16 bits Part Number (190A hex),
 11 bits Manufacturer ID (79B hex), with the last bit always 1.

22 MB-Lite+ User’s Guide

• For reading from the MB-Lite+ internal memory, READ_IMEM and/or READ_DMEM are available.
Both are expected to be preceded by the START_ADDR instruction, while reading stops whenever
TMS_i indicates the start of a new instruction.

• With the JTAG_OFF instruction, control is switched back to the MB-Lite+, which will perform a
fresh restart of code execution from IMEM-address 0x00000000.

Note that the use of 32-bit data here, deviates from the approach to define memory sizes and
addresses in Bytes as has been used throughout this User Guide.

In case JTAG devices are daisy chained, the TDO output of a particular device should be connected to
the TDI input of the next one in the chain, except for the first and the last devices in the chain which
are both connected to a JTAG Programmer. If only one device is involved, both its TDI and TDO pins
should be connected to the Programmer.

Notice however, that usually the TDI pin of a Programmer is defined to be an Output, while its TDO
pin is an Input.

MB-Lite+ User’s Guide 23

4.6 A System Controller

The purpose of a System Control module is to provide all signals that are needed by the units
mentioned before, viz.

• a continuous clock derived from e.g. a 100 MHz crystal controlled system oscillator. The division
factor and ‘low versus high times’ ratio (duty cycle) of this clock generator are controllable with
generics. Default values result in a divide by 4 with 50% duty cycle in order to obtain a
symmetrical 25 MHz clock for both the processor and its peripheral devices.

• optional clock signals for slaves (also adjustable with generics) depending on the demands of the
slave(s) used.

• a ‘clean’ reset signal derived from e.g. a push-button that has been assigned to perform the reset
function. Debouncing is accomplished by integrating (with an up-down counter) the signal from
such a switch. The output changes state when a certain threshold level is reached. The ‘time
constant’ of this integrator is also depending on a generic. Higher values result in a better
suppression of unwanted signals at the penalty of a longer delay before the output reset pulse will
appear.

Note: it seems reasonable, and is also advised, to use a small value when only simulating

with already ‘clean’ signals (see the comments in the source file(s)). Since the testbench
is the top-level entity then, the value of the generic set here will overrule all other values.

Figure 4.10. Block scheme of the system controller.

clk_ext_i clk_mst_o

clk_slvx_o
(optional)

rst_btn_i rst_ext_o

MST_DIV_FACTOR_g
MST_PERIOD_HIGH_g

MIN_RST_COUNT_g

SLVx_DIV_FACTOR_g
SLVx_PERIOD_HIGH_g

sys_ctrl

24 MB-Lite+ User’s Guide

5 SoC Setup

In Figure 5.1, an impression of a full featured setup for a tumbl_SoC is shown (here also embedded in
a testbench top level tb_tumbl_SoC).

Figure 5.1. Example scheme of a SoC with an MB-Lite+ with JTAG i/o
and connections to synchronous and asynchronous slave interfaces, wishbone
slaves, as well as FSL_master- and FSL_slave-interfaces.

MB-Lite+ User’s Guide 25

6 Programming the MB-Lite+

Code for the instruction memory can be developed in the usual way by writing one or more .c-files
and accompanying header file(s).
With the aid of the open source mb-gcc compiler, first two binary files can be created:

imem.bin, containing all instruction code, and
dmem.bin that will be needed to initialize data memory.

Sizes for both instruction and data memories have to be defined in a file, called mem_defs.ld .

The binary files are next translated into the proper formats for further processing by simulator or
synthesizers. All commands for realizing the above are combined in a Makefile to be used as input for
the Linux or Cygwin make utility.

Special care has to be taken that the definitions for imem and dmem sizes and the memory map
definitions as used in the vhdl ‘hardware’ descriptions, are reflected correctly in the .h and .c-files,
as well as in the Makefile and the mem_defs.ld file.
Details can be found in the Appendix and by studying the example designs.

Note: Although an interrupt mechanism is implemented in the hardware, we don’t supply the

low level library code for implementing interrupt service routines, since the necessary Xilinx
code has not been released in the public domain.

 Those who do have a valid Xilinx license can find the necessary files in the EDK tree,
 viz. in ..…/EDK/sw/lib/bsp/standalone_v#_0#_a /src/microblaze/

6.1 Simple Disassembler
The release package contains the c-code to create a very basic disassembler. See the Appendix for
details.

26 MB-Lite+ User’s Guide

7 Basis SystemC Model

At the moment, the package includes a basic SystemC model description of the tumbl consisting of
only the core with instruction and data memory. In fact, this is a stripped down version of the
complete description (no FSL yet, to be released) that mimics (cycle accurate, bit accurate) the
previously described VHDL architectures.
This basic version is not aware of (external) memory above dmem itself. Should this memory be
addressed, then writing will have no effect, while reading an ‘invalid’ address will return 0xdeadbeef
as a result. FSL ports and/or instruction are also not supported. This version’s main purpose is the use
as instruction set simulator: the resulting executable after compilation –tumbl_iss or
tumbl_iss.exe– (by default) reads the same imem.bin and dmem.bin files as used for simulation
and/or programming the hardware implementation.

Command line options are available, as illustrated below:

Usage: tumbl_iss <option(s)>
 simulate MBLite behavior
 Options are:
 -c Specify clock-period in ns (default 10 ns)
 -t Specify simulation-time in ns (default 10000 ns)
 -r Specify rst_start and optionally rst_width (default 100 and 150 ns)
 -i Specify irq_start and optionally irq_width (default no irq, and if any: width
150 ns)
 -p Specify path to imem.bin and dmem.bin (if omitted, search in current directory)
 -P same as a single -p or -p .
 -s Specify path/filename of single binary file
 -S Read imem.bin in current directory (single binary)
 -h Display this information

Note: use a comma as separator between start and width values

The only possible (and adjustable) inputs are thus a clock, a reset and an interrupt signal.
Examples:
 tumbl_iss
 tumbl_iss –c40 –r100,300 –t5000000

tumbl_iss -r10,150 -c10 -t2000 –p ../sw > test.iss

Memory sizes (in Bytes) for imem and dmem can be set in the main.h file, and defaults to

#define IMEMSIZE_g 32768
#define DMEMSIZE_g 32768

Note:
The –s and –S options are in fact outdated, being intended to be backwards compatible with the first
version of the MB-Lite [MB-Lite]. This old version was programmed from a single file that contained
all data for both instruction and data memory.

MB-Lite+ User’s Guide 27

 |
 |
 840 ns - 0158: 20c60004 addi r6, r6, 0x4 r6 := 0x6b4 (0x6b0 + 0x4), MSR_C := 0
 850 ns - 015c: 06463800 rsub r18, r6, r7 r18 := 0x0 (0x6b4 - 0x6b4), MSR_C := 1
 860 ns - 0160: bc92fff4 bgti r18, 0xfff4 r18 = 0x0
 870 ns - 0164: b9f4020c brild r15, 0x20c r15 := 0x164
 880 ns - 0168: 80000000 or r0, r0, r0 nop
 900 ns - 0370: b60f0008 rtsd r15, 0x8 back to 0x16c (0x164 + 0x8)
 910 ns - 0374: 80000000 or r0, r0, r0 nop
 930 ns - 016c: b9f403c4 brild r15, 0x3c4 r15 := 0x16c
 940 ns - 0170: 80000000 or r0, r0, r0 nop
 960 ns - 0530: 3021fff8 addik r1, r1, 0xfff8 r1 := 0x2e8c (0x2e94 + 0xfffffff8)
 970 ns - 0534: d9e00800 sw r15, r0, r1 dmem[0xba3] <= 0x0000016c
 980 ns - 0538: b9f4fb94 brild r15, 0xfb94 r15 := 0x538
 990 ns - 053c: 80000000 or r0, r0, r0 nop
 1010 ns - 00cc: b0000000 imm 0x0000
 1020 ns - 00d0: 30600000 addik r3, r0, 0x0 r3 := 0x0 (0x0 + 0x0)
 1030 ns - 00d4: 3021ffe4 addik r1, r1, 0xffe4 r1 := 0x2e70 (0x2e8c + 0xffffffe4)
 1040 ns - 00d8: f9e10000 swi r15, r1, 0x0 dmem[0xb9c] <= 0x00000538
 1050 ns - 00dc: 30a0068c addik r5, r0, 0x68c r5 := 0x68c (0x0 + 0x68c)
 1060 ns - 00e0: 30c0069c addik r6, r0, 0x69c r6 := 0x69c (0x0 + 0x69c)
 1070 ns - 00e4: bc03000c beqi r3, 0xc r3 = 0x0
 1100 ns - 00f0: e8600690 lwi r3, r0, 0x690 r3 := dmem[0x1a4] = 0x00000000
 1110 ns - 00f4: b0000000 imm 0x0000
 1120 ns - 00f8: 30800000 addik r4, r0, 0x0 r4 := 0x0 (0x0 + 0x0)
 1130 ns - 00fc: bc030014 beqi r3, 0x14 r3 = 0x0
 1160 ns - 0110: e9e10000 lwi r15, r1, 0x0 r15 := dmem[0xb9c] = 0x00000538
 1180 ns - 0114: b60f0008 rtsd r15, 0x8 back to 0x540 (0x538 + 0x8)
 1190 ns - 0118: 3021001c addik r1, r1, 0x1c r1 := 0x2e8c (0x2e70 + 0x1c)
 1210 ns - 0540: b9f4ffb0 brild r15, 0xffb0 r15 := 0x540
 1220 ns - 0544: 80000000 or r0, r0, r0 nop
 1240 ns - 04f0: e8600570 lwi r3, r0, 0x570 r3 := dmem[0x15c] = 0xffffffff
 1250 ns - 04f4: 3021ffe0 addik r1, r1, 0xffe0 r1 := 0x2e6c (0x2e8c + 0xffffffe0)
 1260 ns - 04f8: fa61001c swi r19, r1, 0x1c dmem[0xba2] <= 0x00000000
 1270 ns - 04fc: f9e10000 swi r15, r1, 0x0 dmem[0xb9b] <= 0x00000540
 1280 ns - 0500: 32600570 addik r19, r0, 0x570 r19 := 0x570 (0x0 + 0x570)
 1290 ns - 0504: aa43ffff xori r18, r3, 0xffff r18 := 0x0 (0xffffffff ^ 0xffffffff)
 1300 ns - 0508: bc120018 beqi r18, 0x18 r18 = 0x0
 1330 ns - 0520: e9e10000 lwi r15, r1, 0x0 r15 := dmem[0xb9b] = 0x00000540
 1340 ns - 0524: ea61001c lwi r19, r1, 0x1c r19 := dmem[0xba2] = 0x00000000
 1350 ns - 0528: b60f0008 rtsd r15, 0x8 back to 0x548 (0x540 + 0x8)
 1360 ns - 052c: 30210020 addik r1, r1, 0x20 r1 := 0x2e8c (0x2e6c + 0x20)
 1380 ns - 0548: c9e00800 lw r15, r0, r1 r15 := dmem[0xba3] = 0x0000016c
 1400 ns - 054c: b60f0008 rtsd r15, 0x8 back to 0x174 (0x16c + 0x8)
 1410 ns - 0550: 30210008 addik r1, r1, 0x8 r1 := 0x2e94 (0x2e8c + 0x8)
 1430 ns - 0174: 20c00000 addi r6, r0, 0x0 r6 := 0x0 (0x0 + 0x0), MSR_C := 0
 1440 ns - 0178: 20e00000 addi r7, r0, 0x0 r7 := 0x0 (0x0 + 0x0), MSR_C := 0
 1450 ns - 017c: b9f4002c brild r15, 0x2c r15 := 0x17c
 1460 ns - 0180: 20a00000 addi r5, r0, 0x0 r5 := 0x0 (0x0 + 0x0), MSR_C := 0
 1480 ns - 01a8: 3021fff0 addik r1, r1, 0xfff0 r1 := 0x2e84 (0x2e94 + 0xfffffff0)
 1490 ns - 01ac: fa61000c swi r19, r1, 0xc dmem[0xba4] <= 0x00000000
 |
 |

Figure 6.1. Snippet of text output from the tumbl_iss, when compiled for
assembly code output instead of --or next to- waveform trace output. Shown
are sequential code execution steps for a clock input of 100 MHz.

28 MB-Lite+ User’s Guide

8 The MB-Lite+ Package

The aforementioned SoC architecture is described in a number of VHDL files. Some of these files can
be used without any alterations as they are independent of the rest of the design, while others need to
be tailored to the exact wishes of the designer.

8.1 Hierarchy
As also shown in Figure 5.1, a top level file called e.g. tumbl_soc.vhd is used to describe the
synthesizable implementation. In this description, VHDL ‘generics’ define parameter values that are
passed to the lower level architectures, so all parameters can be adjusted from a central place.

Also shown in Figure 5.1 is, that the top level file for synthesis can be overridden by a top level
simulation/testbench file, given here as tb_tumbl_soc.vhd (or just tb_soc.vhd).
This testbench’s architecture instantiates the tumbl_soc using parameters for simulation (also given
in ‘generics’) that may overrule those in use for synthesis.
Generics for simulation usually only differ from those for synthesis in order to obtain either more
realistic or more bearable simulation times (e.g. to shorten delays in ‘slow’ slaves, lower counter
thresholds, etc.) without affecting e.g. the values to be used for synthesis later on.
Next to that, the testbench defines stimuli signals and possibly reads data from and/or writes data to
disk files.

8.1.1 Naming conventions used in the vhdl-files

All entities can be found in files with the same name as the entity with the .vhd extension appended.

In the VHDL files, signal groups that connect the several entities, are combined in VHDL records.
The definition of the signal types can be found in the _Pkg.vhd package descriptions, viz.
mbl_Pkg.vhd, dmb_ext_Pkg.vhd, JTAG_Pkg.vhd, etc.

Input ports for each entity are indicated with the postfix _i, and output ports consequently with _o.

The types of the signals between the instantiated entities or components indicate the direction of the
signal flow, e.g.

from core to data memory bus CORE2DMEMB_Type, signal name e.g. c2dmemb_s
from data memory bus to core DMEMB2CORE_Type, signal name e.g. dmemb2c_s

MB-Lite+ User’s Guide 29

9 Example Designs

In the release package, 3 example designs can be found. Here, only a short summary will be given of
their purposes. Detailed descriptions can be found in a separate “Example Designs Manual”, also
available from my website.

For each example, all that is needed to perform simulation, synthesis, place-and-route and bit-file
generation is available, either in a directly to be used format, in a template form that has to be
adapted first or as a file that can be generated by means of a utility.
Resulting .bit-files are given that can be programmed directly onto an AVNET XC3S2000
Development Kit, as well as .bit-files for an AVNET Spartan-6 LX9 MicroBoard.

9.1 Hello
This example describes a basic tumbl/uart setup to check serial communication (19200 Bd). Since
the uart is the only ‘external’ device, no dmb_selector has been used.

9.2 SW Test
A more comprehensive test (again tumbl/uart), where the tumbl now includes a hardware
multiplier and a barrel shifter. The software checks the behavior of these modules, as well as the
interrupt mechanism (interrupt generated by the uart when a key is pressed), and several other low
level software/assembler instructions.
Although again the uart is the only ‘external’ device, a dmb_selector has been used here.

9.3 Integer-DCT with FSL
In this example, which has been inspired by the (deprecated) XAPP529 Application Note from Xilinx,
a tumbl_FSL_M_S is connected to an FSL component that performs an Integer Discrete-Cosine-
Transform on an 8x8 data matrix. The FSL Channels (from the tumbl_FSL_M_S’s Master output to
the iDCT module’s Slave input, and back from the iDCT’s M-output to the tumbl_FSL_M_S’s S-input
are both made up with a custom single delay deep FIFO element.

9.4 Memory Mapped Slaves and Slave Emulators
Here, a tumbl is connected to a number of modules that emulate slave devices using memory mapped
registers for data communication and that each can emulate a (relatively) time consuming operation.
Also connected are the uart and a memory mapped register to enable software control of LEDs present
on a pcb.

30 MB-Lite+ User’s Guide

10 What’s next?

A small next step would be to not only generate the tumbl configurations, but to also easily generate
the VHDL descriptions of more complete SoCs, so including memories, a dmb_selector, dmb_adapters,
etc., either from a configuration-file or using a GUI.

A bigger project would be to complete the SystemC model of the tumbl with FSL and JTAG ports. In
fact to create a high level SystemC model describing a complete SoC, that behaves exactly as the
VHDL does now. 4)

4) An older, but more elaborate SystemC model of a so-called MBL1C processor (one cycle, no pipeline) that
 can connect to a number of slaves by means of a Wishbone bus has been part of the ET4351 course as an MSc
 project. It can be downloaded from http://ens.ewi.tudelft.nl/Education/courses/et4351/ (search for the SystemC
 Simulation Package and for the User Guide).

http://ens.ewi.tudelft.nl/Education/courses/et4351/

MB-Lite+ User’s Guide 31

11 References

[MB-Lite] Design of a Portable and Customizable Microprocessor for Rapid System Prototyping,

CAS-MS-2009-13, Master of Science Thesis, Tamar Kranenburg B.Sc.
Source code available through http://opencores.org/project,mblite,overview

[MicroBlaze] MicroBlaze Processor Reference Guide UG081 (v10.2), Xilinx Embedded Development
Kit EDK 11.3

[DS449] LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c), Xilinx Embedded

Development Kit EDK 11.3

[XAPP529] Connecting Customized IP to the MicroBlaze Soft Processor Using the Fast Simplex

Link (FSL) Channel, Xilinx Application Note

[WBSpec] Specifications for the WISHBONE System-on-Chip (SoC) Interconnection
 Architecture for Portable IO Cores, Revision B.3, September 7, 2002
 http://cdn.opencores.org/downloads/wbspec_b3.pdf
 or
 Prerelease Rev. B4, 06/22/2010:

http://cdn.opencores.com/downloads/wbspec_b4.pdf

[Modeltech] ModelSim User Guide and Reference Guide

http://model.com/content/modelsim-se-downloads-support or
http://model.com/content/modelsim-pe-student-edition-hdl-simulation
under tab DownLoads

[Cygwin] Cygwin is a Linux-like environment for Windows ….

http://www.cygwin.com/

http://opencores.org/project,mblite,overview
http://cdn.opencores.org/downloads/wbspec_b3.pdf
http://cdn.opencores.com/downloads/wbspec_b4.pdf
http://model.com/content/modelsim-se-downloads-support
http://model.com/content/modelsim-pe-student-edition-hdl-simulation
http://www.cygwin.com/

32 MB-Lite+ User’s Guide

Appendix

A.1 Installation and software requirements

The VHDL files are Operating System independent, and should work on any system.
Everything has been tested both on Windows with Cygwin, and on Linux machines.
In our setups, we used Mentor Graphics’ ModelSim-SE for simulation, Synopsys’ Synplify Pro or
Premier for synthesis, and the Xilinx ISE programs for place-and-route and for loading the memories.
Xilinx’s iMPACT has been the choice for programming the .bit-files into an FPGA, or –when
programming in a JTAG configuration- an Amontec JTAGkey2 and a custom executable.

For creating the initialized memory files imem.bin and dmem.bin, the mb-gcc compiler will be
needed.

The most recent MB-Lite+ release can be downloaded from http://ens.ewi.tudelft.nl/~huib/vhdl
Preserve full path names when unzipping.
The example designs are extensively described in a separate manual (follow same link as above).

In the MB-Lite_Plus_v12.1 top level directory, the following sub-directories should then be present:

MBLite_Plus_v12.1

 │

 ├── boards

 ├── hdl

 │ ├─── all_tumbl_cfgs

 │ ├─── dmb_ext

 │ └─── memories

 │ ├─── Faraday

 │ ├─── inferred

 │ └─── Xilinx_BRAM

 ├── misc_hdl

 ├── misc_sw

 ├── scripts

 ├── sw_utils

 │ ├─── mb-dasm

 │ └─── src

 ├── sysC

 │

 └── designs

 ├─── hello (with their own subdirectories)
 ├─── sw_test (with their own subdirectories)
 ├─── fsl_idct (with their own subdirectories)
 └─── slaves_ex (with their own subdirectories)

In the following sections, the several VHDL-files, packages, utilities, etc. will be discussed in detail.

http://ens.ewi.tudelft.nl/~huib/vhdl

MB-Lite+ User’s Guide 33

A.2 Contents of the release package

Note Files with an extension _template are either not complete or presumed to be not usable as is:
they should be adapted to the SoC that is to be designed!

In the boards/-directory:

 AVNET_DK_xc3s2000.ucf pin definitions for the AVNET Spartan-3 Development Kit
 AVNET_6LX9_MicroBoard.ucf pin definitions for the AVNET Spartan-6 LX9 MicroBoard

In the hdl/-directory:

 core_ctrl.vhd sequential pipeline-control unit
 decode.vhd combinatorial decode unit
 exeq.vhd combinatorial execute unit
 fetch.vhd combinatorial fetch unit
 fsl_M_selector.vhd selector controlling the FSL-Master outputs
 fsl_S_selector.vhd selector controlling the FSL-Slave inputs
 mbl_Pkg.vhd package with definitions and functions
 mem.vhd combinatorial mem unit

In the hdl/all_tumbl_cfgs/-directory:

 tumbl.vhd all possible tumbl configurations …

 tumbl_fsl_M.vhd ... created with gen_tumbl_vhd.c (see sw_utils/src)
 tumbl_fsl_M_S.vhd
 tumbl_fsl_S.vhd
 tumbl_jtag.vhd
 tumbl_jtag_fsl_M.vhd
 tumbl_jtag_fsl_M_S.vhd
 tumbl_jtag_fsl_S.vhd

 tumbl_comp_Pkg.vhd package with all component declarations
 tumbl_instants.templ summary of all possible instantiations

In the hdl/dmb_ext/-directory:

 dmb_adapter.vhd interface between data-memory bus and a slave (sync|async)
 dmb_ext_Pkg.vhd package with additional definitions
 dmb_selector.vhd memory map controller
 pulse_extender.vhd extent the length of an active high signal
 wishbone_adapter.vhd interface between data-memory bus and a Wishbone slave

In the hdl/JTAG32/-directory:

 JTAG_Ctrl.vhd JTAG controller connecting to the outside world
 JTAG_IR_Proc.vhd JTAG instructions processor
 JTAG_Pkg.vhd package with additional JTAG definitions

34 MB-Lite+ User’s Guide

In the hdl/memories/Faraday/-directory:

Note that the following code is intended only as an example illustrating the use of specific memories.
For simulation i.e.. VITAL_Primtives and VITAL_Timing libraries will be needed, as well as layout
data in case of synthesis.
 dmem_Faraday.vhd wrapper to instantiate the correct Faraday component
 Faraday_mem_Pkg.vhd package with additional definitions
 gprf_abd_Faraday.vhd wrapper to instantiate the correct Faraday components
 imem_Faraday.vhd wrapper to instantiate the correct Faraday component
 imem_wre_Faraday.vhd wrapper to instantiate the correct Faraday component
 SJAA90_32X32X1CM4.vhd Faraday component used for the gprf
 SHAA90_4096X8X4CM4.vhd Faraday component used for dmem
 SHAA90_4096X32X1CM4.vhd Faraday component used for imem imem_wre

In the hdl/memories/inferred/-directory:

 dpram.vhd Dual Port RAM entity/architecture
 gprf_abd_inferred.vhd infer the General Purpose Register File
 dmem_inferred.vhd infer data memory
 imem_inferred.vhd infer instruction memory ROM

 imem_wre_inferred.vhd infer R/W instruction memory (needed for JTAG)

In the hdl/memories/Xilinx_BRAM/-directory:

 gprf_abd_RAMB16_S36_S36.vhd instantiates and connects Block RAMs for the gprf
 dmem_RAMB16_S9.vhd instantiates and connects Block RAMs for dmem
 imem_RAMB16_S36.vhd instantiates and connects Block RAMs for imem
 imem_wre_RAMB16_S36.vhd … and for imem_wre (R/W for JTAG)

In the misc_hdl/-directory:

 clk_div.vhd clock divider using generics for division factor and duty-cycle
 debouncer.vhd eliminate bouncing of a (simulated) reset button
 misc_comp_Pkg.vhd package with additional definitions and functions
 sys_ctrl.vhd_template connects clock generator(s) and the reset debouncer
 uart_AVR8.vhd simple UART copied from the AVR8 release by R. Lepetenok

In the misc_sw/-directory:

 Makefile_template starting point for creating the .bin-files, etc.
 mbl_asm.h additional Macros and assembler code
 mbl_settings_def_template (path) definitions referred to by the Makefile
 memmap.h_template defines memory base-addresses, for a specific design
 mem_defs.ld_template memory setup info, to be read by the Makefile
 uart_AVR8.h defines for the AVR8 uart
 uart_AVR8.c low level functions for controlling the AVR8 uart

MB-Lite+ User’s Guide 35

In the scripts/-directory:

 makebit_bmm for generating a bit file using Xilinx ISE executables
 makemem to be used for updating the memory in an existing bit-file
 make_mpf_template utility for creating a ModelSim .mpf project file

In the sw_utils/mb-dasm/-directory:

 imem.bin_example example of a binay instruction file
 Makefile simple makefile with commands for the make-utility
 mb-dasm.cpp source for the disassembler

In the sw_utils/src/-directory:

 bin2imem_dmem.c for creating the imem_dmem.mem memory file for programming
 bin2mem_4x8b.c for creating dmem0.mem … dmem3.mem memory files
 bin2mem_32b.c for creating the imem.mem memory file
 bin2mem_ramb16_4x8b.c for creating .mem data memory files when RAMBs are involved
 bin2mem_ramb16_32b.c creates .mem instruction memory files for RAMBs usage
 bin2vhd_dmem4.c 5) for creating the initialized dmem-init.vhd (inferred memory)
 bin2vhd_imem.c 5) for creating the initialized imem-init.vhd (inferred memory)
 elf2bins.c custom .elf-file translator (replaces binutil’s objdump)
 gen_bmm.c for creating a .bmm-file description
 gen_start_do.c for creating a start.do file for ModelSim (based on RAMBs)
 gen_tumbl_vhd.c for creating one of the possible configurations
 makeit very simple script for creating the executables (Linux/Cygwin)
 makeit.bat

In the sysC/-directory:

 imem.bin_example example file with binary instructions
 main.cpp top level command line interface
 main.h top level header file
 Makefile simple makefile with commands for the make-utility
 mblite_cid_iss.h SystemC model of the Instruction Set Simulator
 run_cid_iss.h stimuli signal simulator to feed the ISS
 types.h two more header files …
 utils.h

5) In fact needed by previous versions, and now superseded by the use of the .mem-files

36 MB-Lite+ User’s Guide

The designs/-directory contains four examples, according to the following setup.
These designs are extensively described in a separate Example Designs Manual.

 designs
 │

 ├── hello vhdl descriptions specific for this design

 │ ├─── sw software to be executed by the tumbl

 │ ├─── tb_msim the vhdl testbench for this design

 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify

 │ ├─── rev_1 work directory for Synplify and ISE (XC3S2000 here)

 │ └─── rev_2 work directory for Synplify and ISE (6LX9 here)
 │

 ├── sw_test vhdl descriptions specific for this design

 │ ├─── sw software to be executed by the tumbl (full version)
 │ ├─── sw_6LX9 software version adapted for the 6LX9

 │ ├─── tb_msim the vhdl testbench for this design

 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify

 │ ├─── XC3S2000 implementation directory for Synplify and ISE

 │ └─── 6LX9 implementation directory for Synplify and ISE
 │

 ├── fsl_idct vhdl descriptions for the fst_dct example
 │ ├─── matlab Matlab verification data

 │ ├─── sw dedicated software to be executed by the tumbl
 │ ├─── tb_msim the vhdl testbench for this design
 │ │ └─── msim project directory for ModelSim

 │ └─── synth project directory for Synplify
 │ ├─── XC3S2000 implementation directory for Synplify and ISE
 │ └─── 6LX9 implementation directory for Synplify and ISE
 │

 └── slaves_ex vhdl descriptions for the slaves_ex example
 ├─── sw dedicated software to be executed by the tumbl
 ├─── tb_msim the vhdl testbench for this design
 │ └─── msim project directory for ModelSim

 └─── synth project directory for Synplify
 └─── 6LX9 implementation directory for Synplify and ISE

MB-Lite+ User’s Guide 37

The following files should be present.

In the designs/hello/-directory:

 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design
 tumbl_uart_soc.vhd top level circuit description for synthesis (50 MHz tumbl-clock)

In the designs/hello/sw/-directory:

 hello.c the actual c-source of the actions to be performed
 Makefile input commands for the make utility

 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

In the designs/hello/tb_msim/

 tb_soc.vhd top level testbench file (generics given here overrule all others)

In the designs/hello/tb_msim/msim/-directory:

 make_mpf.do script for creating the project file for ModelSim

 msim.mpf (template) project file for ModelSim

 start.do memory load and simulation file as created for this design
 wave.do waveform layout definition for this design

In the designs/hello/synth/-directory:

 synth.prj project file for Synplify
 synth.sdc (timing) constraints for Synplify

In the designs/hello/synth/rev_1/-directory:

 AVNET_DK_xc3s2000.ucf pin definitions for the AVNET Spartan-3 Development Kit
 hello.bit this is the working code to be programmed in the XC3S2000
 makebit_bmm script for generating a bit file using Xilinx ISE tools
 makemem script for updating imem and dmem in the bit-file
 tumbl_uart_soc.bmm info needed by makebit_bmm to assign space to memories

In the designs/hello/synth/rev_2/-directory:

 AVNET_6LX9_MicroBoard.ucf pin definitions for the AVNET Spartan-6 LX9 MicroBoard
 hello.bit this is the working code to be programmed in the Spartan6 LX9
 makebit_bmm script for generating a bit file using Xilinx ISE tools
 makemem script for updating imem and dmem in the bit-file
 tumbl_uart_soc.bmm info needed by makebit_bmm to assign space to memories

38 MB-Lite+ User’s Guide

In the designs/sw_test/-directory:

 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design
 tumbl_uart_soc.vhd top level circuit description for synthesis (25 MHz tumbl-clock)

In the designs/sw_test/sw/-directory:

 dhry.c c-source for the Dhrystone benchmark
 dhry.h header file for dhry.c
 Makefile input commands for the make utility
 mbl_asm.h additional Macros and assembler code needed here
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 testbench.c the actual c-source of the actions to be performed (full version)
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

In the designs/sw_test/sw_6LX9/-directory:

 Makefile input commands for the make utility
 mbl_asm.h additional Macros and assembler code needed here
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 testbench.c the actual c-source of the actions to be performed
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate (19200 Bd)

In the designs/sw_test/tb_msim/-directory:

 tb_soc.vhd top level testbench file (generics given here overrule all others)

In the designs/sw_test/tb_msim/msim/-directory:

 make_mpf.do script for creating the project file for ModelSim

 msim.mpf (template) project file for ModelSim

 wave.do waveform layout definition for this design

In the designs/sw_test/synth/-directory:

 synth.prj project file for Synplify

In the designs/sw_test/synth/XC3S2000/-directory:

 sw_test_xc3s2000.bit this is the working code to be programmed in the XC3S2000

In the designs/sw_test/synth/6LX9/-directory:

 sw_test_6LX9.bit this is the working code to be programmed in the 6LX9

MB-Lite+ User’s Guide 39

In the designs/fsl_idct/-directory:

 fsl_bb1.vhd FSL Master-to-Slave interface (one level deep)
 fsl_idct.vhd the integer Discrete Cosine Transform block
 fsl_idct_Pkg.vhd package file with component declarations
 fsl_idct_uart_soc.vhd top level circuit description for synthesis (50 MHz tumbl-clock)
 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design

In the designs/fsl_idct/matlab/-directory:

 check_idct.m Matlab file for computing the expected results
 check_idct.out text file with (intermediate) results

In the designs/fsl_idct/sw/-directory:

 fsl_idct.c the actual c-source of the actions to be performed
 fsl_idct_msim.c c-source for simulation without uart actions and print out
 Makefile input commands for the make utility
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate

In the designs/fsl_idct/tb_msim/-directory:

 tb_soc.vhd top level testbench file (generics given here overrule all others)

In the designs/fsl_idct/tb_msim/msim/-directory:

 make_mpf.do script for creating the project file for ModelSim

 msim.mpf (template) project file for ModelSim

 wave.do waveform layout definition for this design

In the designs/fsl_idct/synth/-directory:

 synth.prj project file for Synplify

In the designs/fsl_idct/synth/6LX9/-directory:

 fsl_idct.bit this is the working code to be programmed in the XC3S2000

In the designs/fsl_idct/synth/XC3S2000/-directory:

 fsl_idct.bit this is the working code to be programmed in the 6LX9

Some files, especially in the project directories, have been left out here, since either
• they are automatically inserted during the software creation process, or since
• their purposes shall be clear from the previous example.

40 MB-Lite+ User’s Guide

In the designs/slaves_ex/-directory:

 sys_ctrl.vhd the controller (clock divider and reset circuitry) for this design
 tumbl_slaves_ex_SoC.vhd top level circuit description for synthesis (50 MHz tumbl-clock)
 amb_slave_emu.vhd slave emulator with an asynchronous data interface
 smb_slave_emu.vhd slave emulator with a synchronous data interface
 wb_slave_emu.vhd slave emulator with a wishbone interface
 slv_Pkg.vhd package file with component declarations

In the designs/slaves_ex/sw/-directory:

 Makefile input commands for the make utility
 memmap.h the memory map base address of the uart
 mem_defs.ld definition of imem and dmem sizes
 uart_AVR8.c low level functions for serial communication
 uart_AVR8.h description of the uart’s registers and BaudRate
 slaves_ex.c the actual c-source for synthesis
 slaves_ex.c the c-source for faster simulation without uart output
 amb_slv1.h, smb_slv2.h, description and specs of the other slaves
 wb_slv3.h, wb_slv4.h, wb_slv5.h
 dmb_reg.h.

In the designs/slaves_ex/tb_msim/-directory:

 tb_soc.vhd top level testbench file (generics given here overrule all others)

In the designs/slaves_ex/tb_msim/msim/-directory:

 make_mpf.do script for creating the project file for ModelSim

 msim.mpf (template) project file for ModelSim

 wave.do waveform layout definition for this design

In the designs/slaves_ex/synth/-directory:

 synth.prj project file for Synplify

In the designs/slaves_ex/synth/6LX9/-directory:

 slaves_ex.bit this is the working code to be programmed in the 6LX9

MB-Lite+ User’s Guide 41

A.3 Simulation and Synthesis setup

In Figure A.3.1, all files needed for a basic design –based on a particular tumbl configuration- are
listed. Other ip-files can be easily added.

System-on-Chip involving a

tumbl tumbl with FSL tumbl with JTAG tumbl with JTAG and FSL

mbl_Pkg.vhd

fetch.vhd

decode.vhd

exeq.vhd

mem.vhd

core_ctrl.vhd

gprf_abd_xxxx.vhd

dmem_xxxx.vhd

imem_xxxx.vhd imem_xxxx.vhd imem_wre_xxxx.vhd imem_wre_xxxx.vhd

 fsl_M_selector.vhd

and/or
fsl_S_selector.vhd

 fsl_M_selector.vhd

and/or
fsl_S_selector.vhd

 JTAG_Pkg.vhd

JTAG_Ctrl.vhd

JTAG_IR_Proc.vhd

JTAG_Pkg.vhd

JTAG_Ctrl.vhd

JTAG_IR_Proc.vhd

tumbl.vhd tumbl_fsl_M.vhd

or
tumbl_fsl_S.vhd

or

tumbl_fsl_M_S.vhd

tumbl_jtag.vhd tumbl_jtag_fsl_M.vhd

or
tumbl_jtag_fsl_S.vhd

or
tumbl_jtag_fsl_M_S.vhd

misc_comp_Pkg.vhd

clk_div.vhd

debouncer.vhd

sys_ctrl.vhd

uart_AVR8.vhd

tumbl_XXXX_soc.vhd

tb_soc.vhd

Figure A.3.1 Combination of files for a tumbl system.

42 MB-Lite+ User’s Guide

Figure A.3.2 gives an impression of the design setup and flow that has also been used in the
description of the example designs, and that is more or less expected for a smooth operation of the
provide Makefile(s).
Directory names are marked blue. Other colors indicate files that are created and –when needed by
another program- are moved to the correct directory.

Pointwise, assuming that all vhdl-code has been written, some remarks follow about the steps that can
be taken to obtain a working .bit-file. The description is based on the assumption that ModelSim,
Synplify Pro or Premier and Xilinx ISE are available.

• First of all the utilities in the sw_utils/src/-directory should be compiled, and the path to where

the executables are located should be made known in the mbl_settings.def-file, which in turn
will be read by the Makefile in the sw-directory.

Figure A.3.2 Directory structure and files.

design_name
top_level_soc.vhd
sys_ctrl.vhd

(additional ip.vhd-files)

sw

Makefile
mem_defs.ld
memmap.h

additional .h and .c-files

tb_msim
tb_soc.vhd

msim
make_mpf.do

msim.mpf
(wave.do)

synth
synth.prj
(synth.sdc)

rev_1

design_name.edf
board_def.ucf
design_name.bmm
make_bit_bmm
makemem

tumbl_16kB_16kB.bmm

imem_dmem.mem

i_ramb_#.mem
i_ramb_#_d0.mem
i_ramb_#_d1.mem
i_ramb_#_d2.mem
i_ramb_#_d3.mem
start.do

tumbl_#k_#k.bmm

’make msim’
’make synth’

imem_dmem.mem

tb_soc.vhd

design_name

MB-Lite+ User’s Guide 43

• Copy the needed files to the sw-directory, edit template file(s) and write the code that has to be
executed by the tumbl.

• If simulation is wanted, a simple

make msim

will create and copy all files needed for a ModelSim simulation session to the tb_sim and
tb_sim/msim directories (these directories should have been created first).

Note: Ignore warnings about overlapping sections when executing the Makefile:

Although the -no-check-sections linker directive is passed to the linker/loader, this
seems to have no effect.

• In tb_sim/msim edit and complete the make_mpf.do file (see the example designs), i.e. list all
vhdl-files to be involved. A project file, msim.mpf, will be created by issuing the command

vsim -c -do make_mpf.do

from the command line.
Check that all paths and libraries (e.g. UNISIM) are listed in this project file, otherwise provide the
correct assignments.
Also, for initializing the memories the way proposed here, it will be necessary that these memories
are visible from within ModelSim. The same holds true for all signals and variables listed in the
wave.do files supplied with the example designs.
The easiest way to obtain this is to change the value of VoptFlow im the project file from the
default 1 in a 0. For faster simulations, of course only the specific memories need to be available.

This project file can be opened from within ModelSim. However, before trying to compile a project
opened this way, first create a work-directory by entering

vlib work

in the Transcript window.
After starting a simulation (tb_soc), a wave.do file can be executes if present.
If the procedure described above has been followed, a

do start.do

 (press Enter two times) will initialize the memories, after which the simulation can be run.

• Note that displaying waveforms for large memory blocks in ModelSim may severely slow down
working with the waveform viewer. In the before mentioned wave.do files the lower level internal
parts of memory blocks are omitted.
On the other hand, (only when simulating) a special array “ram” has been added for easily viewing
and debugging the contents of the General Purpose Registers File (see the gprf_abd_xxxx.vhd
files in the hdl/memories/ directories).

• Synthesis also is expected to be initiated from the sw-directory. This time with

make synth

which will create a template .bmm-file with info for the Xilinx tools about the memory
partitioning and the imem_dmem.mem-file with the contents for these memories.
The template .bmm will be copied to the synth directory and the .mem-file to the revision
directory. The .bmm-file should be renamed (same base name as the top level entity) and copied
or moved to the revision directory too.
Here the easiest way to tell Synplify which files to use, is to edit an existing synth.prj file, as
available in the example designs.

44 MB-Lite+ User’s Guide

After a successful synthesis run, and after copying the script files make_bmm and makemem into
the revision directory, the command

./makebit_bmm <design_filename> <board_specific_user_constaint_filename> 6)

will run the Xilinx ISE tools and result in an initialized .bit-file.

Note: When a design is processed for s Xilinx family that isn’t equipped with RAMB16 memory

blocks, these will usually be replaced with corresponding library elements known to the
device in question. For the Spartan 6 LX9 e.g,. RAMB16BWER components will be used.
As expected, this results in a fairly large number of warnings .

Next

./makemem <design_filename> imem_dmem.mem

will initialize the memories, and create the program.bit-file that can be used to program the
FPGA on the previously selected board.

6) without filename extensions

End of Document

	1 Preface
	2 Introduction
	2.1 RISC Processors
	2.2 From MicroBlaze to MB-Lite +
	2.3 Architecture
	2.4 Memory-mapped I/O
	2.4.1 Adapters for Asynchronous and Synchronous I/O
	2.4.2 Wishbone Interconnection Architecture and Wishbone adapter
	2.4.3 Multiple Slaves

	2.5 Fast Simplex Link (FSL) I/O
	2.6 The Distribution Package

	3 Hardware Architecture
	3.1 MB-Lite+ Instruction Set
	3.1.1 Memory architecture
	3.1.2 Data Alignment

	4 Hardware Implementation
	4.1 Core Configurations
	4.1.1 tumbl
	4.1.2 tumbl_FSL
	4.1.3 tumbl_JTAG
	4.1.4 tumbl_JTAG_FSL
	4.1.5 VHDL entity/architecture/ component

	4.2 ‘internal’ Instruction and Data Memory
	4.3 Memory I/O Extensions
	4.3.1 Timing Relations
	4.3.2 Memory Map Selector
	4.3.3 Async/Sync Adapter
	4.3.4 Master-Wishbone Adapter
	4.3.5 Pulse Extender

	4.4 FSL ports and signals
	4.5 JTAG
	4.6 A System Controller

	5 SoC Setup
	6 Programming the MB-Lite+
	6.1 Simple Disassembler

	7 Basis SystemC Model
	8 The MB-Lite+ Package
	8.1 Hierarchy
	8.1.1 Naming conventions used in the vhdl-files

	9 Example Designs
	9.1 Hello
	9.2 SW Test
	9.3 Integer-DCT with FSL
	9.4 Memory Mapped Slaves and Slave Emulators

	10 What’s next?
	11 References
	Appendix
	A.1 Installation and software requirements
	A.2 Contents of the release package
	A.3 Simulation and Synthesis setup

