

Xilinx FPGA Implementation of
Overflow Correction in a Wave Digital Filter

Starting from a C-based Description
Reinder Nouta and Huibert J. Lincklaen Arriëns

CAS section, Department of Micro-electronics
Faculty of ITS, Delft University of Technology
Mekelweg 4, 2628 CD Delft, the Netherlands.

E-mail: R.Nouta@ITS.TUDelft.nl

Abstract— This paper describes that, under certain

conditions, the area cost of parallel addition number over-
flow detection and correction can be zero when imple-
mented in Xilinx FPGA's. A simple wave digital filter is
shown as an example. A C-based description language can
be used very efficiently.

Keywords— FPGA; Digital Filter

I. INTRODUCTION
In this contribution we discuss the overflow detection

and correction in carry ripple parallel addition and its
implementation cost using 4-input LookUpTables
(LUT's) as being used in Xilinx FPGA chips.

In experiments we used a modern C-based description
language (A|RT-Library + A|RT-C)[1] for description,
Microsoft Visual C++[2] for compilation and simulation,
translation to VHDL using A|RT-Builder[1], Model-
Sim[4] for VHDL simulation, Synplify[3] for VHDL
synthesis, Alliance[5] for Xilinx placement and routing
and finally a Nallatech[6] PCI board with a Xilinx Spar-
tan-2[7] chip for implementation.

 We show that under certain conditions the correction
circuitry can be included in 4-input LUT's causing zero
extra cost.

II. OVERFLOW CHARACTERISTICS AND NUMBER
RANGES

Figure 1 shows as an example the number range of an
8-bits 2's complement binary word. It ranges from +127
downto −128. We show 4 ways overflow in this (exam-
ple) 8 bit system can be handled. The choice of methods
A, B and C from figure 1 can be specified in A|RT-C

directly together with the addition involved, in one line
of code.

Figure 1: 8 bits overflow number ranges.

A. Normal saturation
When an addition of two positive numbers is detected

to grow above +127, we call it positive overflow, the
addition result is fixed at the upper limit of +127. When
the addition of two negative numbers is detected to grow
below −128, we call it negative overflow, the addition
result is fixed at −128. Detection has to reveal which of
the two limits has to be used.

B. Symmetrical saturation
The upper and lower limits used for overflow correc-

tion are now chosen to be symmetric: +127 and −127. In
this case also: detection has to reveal which limit has to
be used. We can take two different positions here:

1. We choose to use the whole available number space,

only if an addition result is being detected to result
in a number that will be too large for that number

373

mailto:R.Nouta@ITS.TUDelft.nl

space, the corresponding number limit is the addi-
tion result instead. This means in the example of fig-
ure 1 that the number −128 is a valid number. Only
if the result will be larger than +127 or −128, the
overflow correction will instead use the numbers
+127 and −127.

2. We choose to use only the number space between
+127 and −127. This means that a result of
−128 means a negative overflow. This case means
that not only detection has to reveal that a result will
be too large for the available 8 bits number space
(for figure 1) but also the value of −128 needs to be
detected for overflow. Only this possibility is im-
plemented in A|RT-Library.

C. Zero-ing
In this case, whenever overflow, positive or negative,

is detected, the result is set to zero.

D. Half-range
The proposed positive and negative correction value

(symmetrical) is half the range. Also in this case we have
the choice to use the whole number space or not. We
only discuss the choice where only a result larger than
+127 or –128 means overflow and will be replaced by
+64 or −64 (figure 1 example). This means a symmetri-
cal saturation at half the range. This overflow method
has not been implemented in the A|RT-C Library.

Figure 2: Xilinx architecture (simplified) showing 4-input
LUT and fast carry path.

The basic building block of parallel adder circuits is

the binary fulladder. This component has 3 inputs and 2
outputs. In terms of a 4-input LUT, that forms the base
component in Xilinx FPGA logic cells, the fulladder can
always be implemented using 2 of these LUT's. One in-
put of these LUT's remains unused in this case. An n-bit
carry ripple adder according to figure 3 will then need 2n
LUT's.

For the Xilinx FPGA series 4000, Spartan, Spartan II,

Virtex and Virtex II, Xilinx has created the possibility of
using a fast carry line between 4-input LUT's for effi-
cient implementation of carry ripple adders. This has the
effect of using 1 LUT per fulladder instead of 2. It also
means that only two inputs for each LUT are used in-
stead of 3 and that placement is restricted to use the col-
umn approach of the implemented fast carry lines.

x y inc sum outc e 0 inmux −

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 1 0 1 d
0 1 1 0 1 1 d
1 0 0 1 0 1 d
1 0 1 0 1 1 d
1 1 0 0 1 0 1
1 1 1 1 1 0 1

Table 1 LUT truth table for fulladder.

The (simplified) Xilinx logic cell architecture is

shown in figure 2[8]. It shows a 4-input LUT and the
fast carry path consisting of one MUX (multiplexer). It
also shows the presence of an XOR for the sum output
and an optional AND gate.

Table 1 shows how a fulladder having x, y and as

inputs and sum and c as outputs, is implemented us-
ing inputs a and b and the fast carry path.

inc

out

The truth table shows that for , needs to be a

copy of input x (or y), implicating that the AND gate is
not used.

0e = outc

A VHDL synthesizer like Synplify will use this fast
carry line if a parallel adder is defined in VHDL as
sum a b= + . This will need n LUT's for an n-bit parallel
adder. When the adder is defined in terms of a hierarchi-
cal adder built from fulladders, the synthesizer will use
2n LUT's.

III. THE C-BASED SOFTWARE USED
We use A|RT-Library, A|RT-C and A|RT-Builder for

description and translation to VHDL and Microsoft Vis-
ual C++ for compilation and simulation and testing of
the C-descriptions.

A|RT-Library is a C++ linkable software library that
allows the user to add fixed-point arithmetic to algo-
rithms coded in a subset of C, including a number of
overflow and truncation algorithms.

374

Figure 3: n bits carry ripple adder.

A|RT-Builder is a software tool that translates a C-

based functional specification of an algorithm or func-
tion into an RTL HDL description, in our case VHDL.
The input to A|RT-Builder is a subset of C, optionally
enhanced with fixed-point classes as provided by A|RT-
Library or SystemC.

Figure 4: n bits carry ripple adder with general overflow
detection and correction, method 1.

The translation process to VHDL has the following
important properties: IV. CARRY RIPPLE ADDER OVERFLOW

In figure 4 a block diagram is given. Overflow is de-
tected at the most significant adder position.

• C function definitions and properties will be inter-
preted as structure and translated into VHDL com-
ponent definitions and instantiations, A. Method 1:

• Sequential statements which are not function calls
will be interpreted as behavior and translated into
sequential statements inside a single VHDL process.

Positive overflow will be detected there when 0a = ,
0b = and 1c = . This means that will occur: the

result word will be negative. Positive overflow will have
been detected when O and negative overflow

will have been detected when O , with:

1s =

1=

1pos =

neg

The translations process from A|RT-C to VHDL keeps

the hierarchical description intact, which means that a
description in A|RT-C for a parallel addition using the +
operator, finally needs n LUT's in its implementation.
Table 2 shows the number of LUT's needed when the
addition is combined with one of the 3 possible overflow
correction methods in A|RT-Library. It becomes clear
that the addition with symmetrical saturation needs more
than 2n LUT's. The reason for this is, that also the most
negative number has to be detected (−128 in figure 1).
This takes the extra LUT's.

pos

neg

O a b

O abc

=

=

c

B. Method 2:
Overflow detection can be done by considering c

and
n

1ns − . Overflow is detected when these bits differ in
value:

1 1pos neg n n n nO O O c s c s− −= + = +

 8 bits 16 bits 24 bits 32 bits

adder 8 16 24 32
adder + sat 16 32 48 64
adder + zero-ing 17 33 49 65
adder + symm. sat 18 38 58 75

C. Method 3:
A fulladder at position n is added. With the proper

sign extensions used, this converts into . Overflow
can now be detected from here.

nc ns

Table 2 Number of LUT’s needed. D. Method 4:
A|RT-C allows the user to effectively reduce the num-

ber of bits used, do overflow detection and correction as
well as a certain truncation, all in one line of code. This
method has in fact been used in the example.

375

Each bit position in figure 4 will need an extra LUT to
implement the overflow correction. The total number is
then 3n. If we choose to use the fast carry lines, the
number will be 2n.

In the case we use method C or D from figure 1, we
can use the simpler version given in figure 5. We now
only need to know the existence of overflow
(O O). Each bit position in the parallel
adder together with overflow correction logic needed in
these two cases can be written in VHDL as an entity-
architecture combination having 4 instead of 5 inputs
and 2 outputs leading to a 2n LUT implementation for a
hierarchical VHDL description of the n-bit parallel addi-
tion. The overflow correction needs no extra LUT space
in these cases.

n-bit parallel addi-
tion. The overflow correction needs no extra LUT space
in these cases.

1pos negO= + =

Figure 5: n bits carry ripple adder with special overflow
detection and correction, method 1.
Figure 5: n bits carry ripple adder with special overflow
detection and correction, method 1.

ImportantImportant: if the fulladder with overflow correction

circuit is being described in A|RT-C in the same way as
in VHDL, simulation of the C-description may lead to
wrong results because the C-description is sequential
and the VHDL description is concurrent!

Formulas for the detection and correction circuits 1F ,

2F , 3F and 4F can easily be found and are very simple.

V. IMPLEMENTATIONS OF OVERFLOW CORRECTIONS
USING THE FAST CARRY LINES

As said before, Figure 2 shows a detailed picture of
the logic cell including the 4-input LUT and the fast
carry line for the Xilinx chips, while table 1 shows the

fulladder implementation.

The question naturally arises whether the overflow

logic can be included in this LUT so that the result
would be that overflow has no cost when implemented
in 4-input LUT's (for a moment we forget what synthesis
software can give us, we simply ask the question
whether it can be done anyhow).

Normally the overflow circuitry follows at the output
of the adder, in this case following the sum output of the
logic cell. It follows directly that extra circuitry cannot
be included in the cell because the only place where the
user can influence the content of the circuit is the pro-
gramming of the LUT and the choice of using the AND
gate or not.

If, however, we have the situation where the overflow
corrected output number flows directly into another ad-
der or subtractor, we may try to add the overflow correc-
tion circuitry into the next LUT involved with the next
adder or subtractor. This, in fact can be done.

We have found the following for the various overflow
characteristics involved:

A. Normal saturation (method A, figure 1)
Saturation (method A, figure 1) circuitry can be

shifted into one input of a next adder LUT. We then
need two extra inputs for that LUT: O and . This

means that when O
pos negO

1pos = , input a of the LUT has the

effect of being 1, in the case O , input a has the
effect of being 0 (this is for the case we describe a bit
position not being the MSB).

1=neg

The next possibility is when the next LUT is meant to
implement a subtractor instead of an adder. In this case
we need to distinguish between the adding and the sub-
tracting input. It may also be needed to invert the defini-
tion of overflow: 0posO = might be needed to define

positive overflow instead of . The same goes

for negative overflow O .

1posO =

neg

Under these conditions we have found that this satura-
tion overflow logic is being absorbed completely in the
next LUT (by the synthesis tool used) resulting in no
extra cost of implementation.

If two adders with overflow logic at the output are both
inputs to the same next adder, this can of course not be-
ing absorbed into the next 4-input LUT. We would need
6 inputs in this case.

376

B. Symmetrical saturation (method B, figure 1)
This case has not been investigated.

C. Zero-ing (method C, figure 1)
We have found that the overflow logic can always be

absorbed into the next LUT, whether it is an adder or a
subtractor. In this case we need only one bit for each
overflow signaling. Also in the case that two inputs to
the next LUT have overflow logic we have found that
this logic will be absorbed in the LUT. It may again be
needed to invert one (or both) of the definitions of over-
flow.

D. Half-range overflow (method D, figure 1).
This is being handled similar to the previous case of

Zero-ing. Only one overflow bit is needed for each over-
flow corrected number which means that we can have
two inputs together with their corresponding overflow
bit connected to a 4-input LUT.

VI. WAVE DIGITAL FILTER EXAMPLE[9]
In figure 6 we show the second order damped resona-

tor circuit as an example. Figure 6d shows the resulting
recursive arithmetical structure. The coefficient 1α con-
trols the Q-factor of the circuit, the coefficient 2α con-
trols the resonant frequency value. From wave digital
theory it follows that we should only detect and correct
overflow at outputs of adapters. That is: no overflow
should happen internally in the adapter arithmetic. This
means for instance that an addition of 2 16-bits words
needs a 17-bit adder. Accordingly, we have to reduce the
number of bits at the outputs of adapters again to the
starting 16 bits. In figure 6d we have restricted us to out-
puts of adapters that are in a recursive path: , and

 are the places where bit reduction and overflow de-
tection and correction has to occur (method 4). Correc-
tion logic can be absorbed by the LUT's of adder 1.
The correction logic c can be shifted through delay T
and absorbed by adder 4. The delay T is then imple-
mented by the flipflops at the outputs of the LUT's form-
ing adder 3. Delay cannot be combined with adder
LUT's and thus must be realized separately. The correc-
tion logic can be combined with it. When the correc-
tion logic is implemented as described, only one input of
each adder involved, is used. This means that we have
the choice of correction method, either saturation, zero-
ing, or half-range method can be implemented in this
case. If we had chosen to absorb correction logic

1c 2c

3c

1c

3c

2

2T

1

1

Figure 6: Wave Digital Filter: prototype circuit and digi-
tal structure.

3c into adders 1 and 2, we had been forced to choose

between the zero-ing or half-range methods since adder
1 now having both inputs to absorb correction logic.

When the coefficients in figure 6d are chosen to be
negative powers of 2 (resulting in just right shifts), the
FPGA layout reveals that exactly 7 fast carry lines are

377

The A|RT-C description is powerful and compact and
the A|RT-Builder tool does its job reliably.

being used (the number of adders implemented is 7).
An A|RT-C description of this filter is given below.

 // description of the wdf version of a

// second order damped resonator circuit
// alpha_1 and alpha_2 are restricted here
// to negative powers of 2,
// while alpha_2 = 1/4 ==> fc/Fs = 0.115,
// and alpha_1 = 1/16 ==> Bandwidth =
// 0.0212

#include <fxp.h>
fxpOqc withSaturation(TRUNCATED,SATURATED);

#define BW 16

// definition and initialization of delay
// elements
Int<BW> T2 = 0;
Int<BW+4> T1 = 0;

void wdfx(const Int<BW> a1,
 Int<BW>& b1, Int<BW>& b2)

{
 #pragma OUT b1 b2
 Int<BW> u0, C1, C2;
 Int<BW+1> s1, s4; Figure 7: spectrum plot of the example Wave Digital Fil-

ter when implemented on the Strathneuy PCI Card. Int<BW+2> u1, u2;
 Int<BW+3> s2;
 Int<BW+4> s3;

 C2 = oqc(T1, &withSaturation); // C2
 s4 = a1 + C2;

REFERENCES u0 = s4 >> Uint<3>(4); // alpha_1
 b2 = -u0; [1] A|RT-Library + A|RT-C + A|RT-Builder Version 2.2,
 u1 = s4 - u0; Frontier Design Inc., now Adelante Technologies Inc.,

www.adelantetech.com. b1 = a1 - u0;
 C1 = oqc(u1+b1, &withSaturation); // C1 [2] Microsoft Visual C++ 6.0 with Service Pack 5. s1 = C1 + T2;

[3] Synplify Pro 7.0, Synplicity Inc. u2 = s1 >> Uint<2>(2); // alpha_2
[4] ModelSim SE Plus 5.5, Model Technology Inc. s2 = T2 – u2;
[5] Alliance 3.3.08i, Xilinx Inc. s3 = s1 + s2;
[6] Nallatech Ltd., Strathnuey PCI Card. // update delay elements
[7] Xilinx Spartan 2 XC2S150 chip. T2 = oqc(s2, &withSaturation); // C3
[8] Xilinx Application Note: XAPP215(v1.0) June 28, 2000. T1 = s3; // delayed s3

Design tips for HDL implementation of Arithmetic functions, }
 Steven Elzinga, Jeffrey Lin, Vinita Singhal.

[9] A.Fettweis, Digital filter structures related to classical filter
networks, A.E.U., band 25, pp. 79 - 89, 1971. VII. CONCLUSIONS

We have shown that overflow detection and correction

circuitry can, under certain conditions, completely be
absorbed in the 4-input LUT's that are used for parallel
addition with fast carry lines, when the choice of imple-
mentation is a Xilinx FPGA. The result is zero extra area
cost.

This can be obtained from a description in A|RT-C,
which means that this high level description method
does not introduce an area penalty when used together
with a VHDL synthesizer for automatic generation of the
Xilinx netlist.

378

	INTRODUCTION
	Overflow characteristics and number ranges
	Normal saturation
	Symmetrical saturation
	Zero-ing
	Half-range

	The C-based software used
	Carry ripple adder overflow
	Method 1:
	Method 2:
	Method 3:
	Method 4:

	Implementations of overflow corrections using the fast carry lines
	Normal saturation (method A, figure 1)
	Symmetrical saturation (method B, figure 1)
	Zero-ing (method C, figure 1)
	Half-range overflow (method D, figure 1).

	Wave digital filter example[9]
	Conclusions

