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Abstract— This paper describes that, under certain 

conditions, the area  cost of parallel addition number over-
flow detection and correction can be zero when imple-
mented in Xilinx FPGA's. A simple wave digital filter is 
shown as an example. A C-based description language can 
be used very efficiently. 
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I. INTRODUCTION 
In this contribution we discuss the overflow detection 

and correction in carry ripple parallel addition and its 
implementation cost using 4-input LookUpTables 
(LUT's) as being used in Xilinx FPGA chips. 

In experiments we used a modern C-based description 
language (A|RT-Library + A|RT-C)[1] for description, 
Microsoft Visual C++[2] for compilation and simulation, 
translation to VHDL using A|RT-Builder[1], Model-
Sim[4] for VHDL simulation, Synplify[3] for VHDL 
synthesis, Alliance[5] for Xilinx placement and routing 
and finally a Nallatech[6] PCI board with a Xilinx Spar-
tan-2[7] chip for implementation. 

 We show that under certain conditions the correction 
circuitry can be included in 4-input LUT's causing zero 
extra cost. 

II. OVERFLOW CHARACTERISTICS AND NUMBER 
RANGES 

Figure 1 shows as an example the number range of an 
8-bits 2's complement binary word. It ranges from +127 
downto −128. We show 4 ways overflow in this (exam-
ple) 8 bit system can be handled. The choice of methods 
A, B and C from figure 1 can be specified in A|RT-C 

directly together with the addition involved, in one line 
of code. 

 

 

Figure 1:  8 bits overflow number ranges. 

 

A. Normal saturation 
When an addition of two positive numbers is detected 

to grow above +127, we call it positive overflow, the 
addition result is fixed at the upper limit of +127. When 
the addition of two negative numbers is detected to grow 
below −128, we call it negative overflow, the addition 
result is fixed at −128. Detection has to reveal which of 
the two limits has to be used. 

B. Symmetrical  saturation 
The upper and lower limits used for overflow correc-

tion are now chosen to be symmetric: +127 and −127. In 
this case also: detection has to reveal which limit has to 
be used. We can take two different positions here: 

 
1. We choose to use the whole available number space, 

only if an addition result is being detected to result 
in a number that will be too large for that number 
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space, the corresponding number limit is the addi-
tion result instead. This means in the example of fig-
ure 1 that the number −128 is a valid number. Only 
if the result will be larger than +127 or −128, the 
overflow correction will instead use the numbers 
+127 and −127. 

2. We choose to use only the number space between 
+127 and −127. This means that a result of 
−128  means a negative overflow. This case means 
that not only detection has to reveal that a result will 
be too large for the available 8 bits number space 
(for figure 1) but also the value of −128 needs to be 
detected for overflow. Only this possibility is im-
plemented in A|RT-Library. 

C. Zero-ing 
In this case, whenever overflow, positive or negative, 

is detected, the result is set to zero. 

D. Half-range 
The proposed positive and negative correction value 

(symmetrical) is half the range. Also in this case we have 
the choice to use the whole number space or not. We 
only discuss the choice where only a result larger than 
+127 or –128 means overflow and will be replaced by 
+64 or −64 (figure 1 example). This means a symmetri-
cal saturation at half the range. This overflow method 
has not been implemented in the A|RT-C Library. 

 

Figure 2:  Xilinx architecture (simplified) showing 4-input 
LUT and fast carry path. 

 
The basic building block of parallel adder circuits is 

the binary fulladder. This component has 3 inputs and 2 
outputs. In terms of a 4-input LUT, that forms the base 
component in Xilinx FPGA logic cells, the fulladder can 
always be implemented using 2 of these LUT's. One in-
put of these LUT's remains unused in this case. An n-bit 
carry ripple adder according to figure 3 will then need 2n 
LUT's. 

For the Xilinx FPGA series 4000, Spartan, Spartan II, 

Virtex and Virtex II, Xilinx has created the possibility of 
using a fast carry line between 4-input LUT's for effi-
cient implementation of carry ripple adders. This has the 
effect of using 1 LUT per fulladder instead of 2. It also 
means that only two inputs for each LUT are used in-
stead of 3 and that placement is restricted to use the col-
umn approach of the implemented fast carry lines. 

 
 

x y inc  sum outc  e 0 inmux −

0 0 0 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 1 0 1 d 
0 1 1 0 1 1 d 
1 0 0 1 0 1 d 
1 0 1 0 1 1 d 
1 1 0 0 1 0 1 
1 1 1 1 1 0 1 

Table 1   LUT truth table for fulladder. 

 
The (simplified) Xilinx logic cell architecture is 

shown in figure 2[8]. It shows a 4-input LUT and the 
fast carry path consisting of one MUX (multiplexer). It 
also shows the presence of an XOR for the sum output 
and an optional AND gate. 

 
Table 1 shows how a fulladder having x, y and  as 

inputs and sum and c  as outputs, is implemented us-
ing inputs a and b and the fast carry path. 

inc

out

 
The truth table shows that for ,  needs to be a 

copy of input x (or y), implicating that the AND gate is 
not used. 

0e = outc

A VHDL synthesizer like Synplify will use this fast 
carry line if a parallel adder is defined in VHDL as 
sum a b= + . This will need n LUT's for an n-bit parallel 
adder. When the adder is defined in terms of a hierarchi-
cal adder built from fulladders, the synthesizer will use 
2n LUT's.  

III. THE C-BASED SOFTWARE USED 
We use A|RT-Library, A|RT-C and A|RT-Builder for 

description and translation to VHDL and Microsoft Vis-
ual C++ for compilation and simulation and testing of 
the C-descriptions. 

A|RT-Library is a C++ linkable software library that 
allows the user to add fixed-point arithmetic to algo-
rithms coded in a subset of C, including a number of 
overflow and truncation algorithms. 
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Figure 3:  n bits carry ripple adder. 

 
A|RT-Builder is a software tool that translates a C-

based functional specification of an algorithm or func-
tion into an RTL HDL description, in our case VHDL. 
The input to A|RT-Builder is a subset of C, optionally 
enhanced with fixed-point classes as provided by A|RT-
Library or SystemC. 

 

Figure 4:  n bits carry ripple adder with general overflow 
detection and correction, method 1. 

 

The translation process to VHDL has the following 
important properties: IV. CARRY RIPPLE ADDER OVERFLOW 

In figure 4 a block diagram is given. Overflow is de-
tected at the most significant adder position. 

• C function definitions and properties will be inter-
preted as structure and translated into VHDL com-
ponent definitions and instantiations, A. Method 1: 

• Sequential statements which are not function calls 
will be interpreted as behavior and translated into 
sequential statements inside a single VHDL process. 

Positive overflow will be detected there when 0a = , 
0b =  and 1c = . This means that  will occur: the 

result word will be negative. Positive overflow will have 
been detected when O  and negative overflow 

will have been detected when O , with: 

1s =

1=

1pos =

neg

 
The translations process from A|RT-C to VHDL keeps 

the hierarchical description intact, which means that a 
description in A|RT-C for a parallel addition using the + 
operator, finally needs n LUT's in its implementation. 
Table 2 shows the number of LUT's needed when the 
addition is combined with one of the 3 possible overflow 
correction methods in A|RT-Library. It becomes clear 
that the addition with symmetrical saturation needs more 
than 2n LUT's. The reason for this is, that also the most 
negative number has to be detected (−128 in figure 1). 
This takes the extra LUT's. 

pos

neg

O a b

O abc

=

=

c
 

B. Method 2: 
Overflow detection can be done by considering c  

and 
n

1ns − . Overflow is detected when these bits differ in 
value: 

1 1pos neg n n n nO O O c s c s− −= + = +   

 8 bits 16 bits 24 bits 32 bits 

adder 8 16 24 32 
adder + sat 16 32 48 64 
adder + zero-ing 17 33 49 65 
adder + symm. sat 18 38 58 75 

C. Method 3: 
A fulladder at position n is added. With the proper 

sign extensions used, this converts  into . Overflow 
can now be detected from here. 

nc ns

 

Table 2   Number of LUT’s needed. D. Method 4: 
A|RT-C allows the user to effectively reduce the num-

ber of bits used, do overflow detection and correction as 
well as a certain truncation, all in one line of code. This 
method has in fact been used in the example. 
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Each bit position in figure 4 will need an extra LUT to 
implement the overflow correction. The total number is 
then 3n. If we choose to use the fast carry lines, the 
number will be 2n.  

In the case we use method C or D from figure 1, we 
can use the simpler version given in figure 5. We now 
only need to know the existence of overflow 
(O O ). Each bit position in the parallel 
adder together with overflow correction logic needed in 
these two cases can be written in VHDL as an entity-
architecture combination having 4 instead of 5 inputs 
and 2 outputs leading to a 2n LUT implementation for a 
hierarchical VHDL description of the n-bit parallel addi-
tion. The overflow correction needs no extra LUT space 
in these cases. 

n-bit parallel addi-
tion. The overflow correction needs no extra LUT space 
in these cases. 

1pos negO= + =

  

  

Figure 5:  n bits carry ripple adder with special overflow 
detection and correction, method 1. 
Figure 5:  n bits carry ripple adder with special overflow 
detection and correction, method 1. 

  
ImportantImportant: if the fulladder with overflow correction 

circuit is being described in A|RT-C in the same way as 
in VHDL, simulation of the C-description may lead to 
wrong results because the C-description is sequential 
and the VHDL description is concurrent! 

 
Formulas for the detection and correction circuits 1F , 

2F , 3F  and 4F  can easily be found and are very simple. 
 

V. IMPLEMENTATIONS OF OVERFLOW CORRECTIONS 
USING THE FAST CARRY LINES 

As said before, Figure 2 shows a detailed picture of 
the logic cell including the 4-input LUT and the fast 
carry line for the Xilinx chips, while table 1 shows the 

fulladder implementation. 
 
The question naturally arises whether the overflow 

logic can be included in this LUT so that the result 
would be that overflow has no cost when implemented 
in 4-input LUT's (for a moment we forget what synthesis 
software can give us, we simply ask the question 
whether it can be done anyhow). 

Normally the overflow circuitry follows at the output 
of the adder, in this case following the sum output of the 
logic cell. It follows directly that extra circuitry cannot 
be included in the cell because the only place where the 
user can influence the content of the circuit is the pro-
gramming of the LUT and the choice of using the AND 
gate or not. 

If, however, we have the situation where the overflow 
corrected output number flows directly into another ad-
der or subtractor, we may try to add the overflow correc-
tion circuitry into the next LUT involved with the next 
adder or subtractor. This, in fact can be done. 

We have found the following for the various overflow 
characteristics involved: 

A. Normal saturation (method A, figure 1) 
Saturation (method A, figure 1) circuitry can be 

shifted into one input of a next adder LUT. We then 
need two extra inputs for that LUT: O  and . This 

means that when O
pos negO

1pos = , input a of the LUT has the 

effect of being 1, in the case O , input a has the 
effect of being 0 (this is for the case we describe a bit 
position not being the MSB).  

1=neg

The next possibility is when the next LUT is meant to 
implement a subtractor instead of an adder. In this case 
we need to distinguish between the adding and the sub-
tracting input. It may also be needed to invert the defini-
tion of overflow: 0posO =  might be needed to define 

positive overflow instead of . The same goes 

for negative overflow O . 

1posO =

neg

Under these conditions we have found that this satura-
tion overflow logic is being absorbed completely in the 
next LUT (by the synthesis tool used) resulting in no 
extra cost of implementation. 
 

If two adders with overflow logic at the output are both 
inputs to the same next adder, this can of course not be-
ing absorbed into the next 4-input LUT. We would need 
6 inputs in this case. 
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B. Symmetrical  saturation (method B, figure 1) 
This case has not been investigated. 

C. Zero-ing (method C, figure 1) 
We have found that the overflow logic can always be 

absorbed into the next LUT, whether it is an adder or a 
subtractor. In this case we need only one bit for each 
overflow signaling. Also in the case that two inputs to 
the next LUT have overflow logic we have found that 
this logic will be absorbed in the LUT. It may again be 
needed to invert one (or both) of the definitions of over-
flow. 

D. Half-range overflow (method D, figure 1). 
This is being handled similar to the previous case of 

Zero-ing. Only one overflow bit is needed for each over-
flow corrected number which means that we can have 
two inputs together with their corresponding overflow 
bit connected to a 4-input LUT. 

 

VI. WAVE DIGITAL FILTER EXAMPLE[9] 
In figure 6 we show the second order damped resona-

tor circuit as an example. Figure 6d shows the resulting 
recursive arithmetical structure. The coefficient 1α  con-
trols the Q-factor of the circuit, the coefficient 2α  con-
trols the resonant frequency value. From wave digital 
theory it follows that we should only detect and correct 
overflow at outputs of adapters. That is: no overflow 
should happen internally in the adapter arithmetic. This 
means for instance that an addition of 2 16-bits words 
needs a 17-bit adder. Accordingly, we have to reduce the 
number of bits at the outputs of adapters again to the 
starting 16 bits. In figure 6d we have restricted us to out-
puts of adapters that are in a recursive path: ,  and 

 are the places where bit reduction and overflow de-
tection and correction has to occur (method 4). Correc-
tion logic  can be absorbed by the LUT's of adder 1. 
The correction logic c  can be shifted through delay T  
and absorbed by adder 4. The delay T  is then imple-
mented by the flipflops at the outputs of the LUT's form-
ing adder 3.  Delay  cannot be combined with adder 
LUT's and thus must be realized separately. The correc-
tion logic  can be combined with it. When the correc-
tion logic is implemented as described, only one input of 
each adder involved, is used. This means that we have 
the choice of correction method, either saturation, zero-
ing, or half-range method can be implemented in this 
case. If we had chosen to absorb correction logic 

1c 2c

3c

1c

3c

2

2T

1

1  

Figure 6:  Wave Digital Filter: prototype circuit and digi-
tal structure. 

 
3c  into adders 1 and 2, we had been forced to choose 

between the zero-ing or half-range methods since adder 
1 now having both inputs to absorb correction logic. 

When the coefficients in figure 6d are chosen to be 
negative powers of 2 (resulting in just right shifts), the 
FPGA layout reveals that exactly 7 fast carry lines are 
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The A|RT-C description is powerful and compact and 
the A|RT-Builder tool does its job reliably. 

being used (the number of adders implemented is 7). 
An A|RT-C description of this filter is given below. 

  
  
 // description of the wdf version of a  

 

// second order damped resonator circuit 
// alpha_1 and alpha_2 are restricted here  
// to negative powers of 2, 
// while alpha_2 = 1/4   ==>  fc/Fs = 0.115, 
// and  alpha_1 = 1/16  ==>  Bandwidth =  
// 0.0212 
 
#include <fxp.h> 
fxpOqc withSaturation(TRUNCATED,SATURATED); 
 
#define BW 16 
 
// definition and initialization of delay 
// elements 
Int<BW>    T2 = 0; 
Int<BW+4>  T1 = 0; 
 

void wdfx( const Int<BW>  a1, 
                 Int<BW>& b1, Int<BW>& b2  ) 
 

{   
  #pragma OUT b1 b2 
    Int<BW>    u0, C1, C2; 
  Int<BW+1>  s1, s4; Figure 7:  spectrum plot of the example Wave Digital Fil-

ter when implemented on the Strathneuy PCI Card.   Int<BW+2>  u1, u2; 
  Int<BW+3>  s2; 
  Int<BW+4>  s3;  
  
  C2 = oqc( T1, &withSaturation);      // C2 
  s4 = a1 + C2; 

REFERENCES   u0 = s4 >> Uint<3>(4);          // alpha_1 
  b2 = -u0; [1] A|RT-Library + A|RT-C + A|RT-Builder Version 2.2,  
  u1 = s4 - u0; Frontier Design Inc., now Adelante Technologies Inc., 

www.adelantetech.com.   b1 = a1 - u0; 
  C1 = oqc( u1+b1, &withSaturation);   // C1 [2] Microsoft Visual C++ 6.0 with Service Pack 5.   s1 = C1 + T2; 

[3] Synplify Pro 7.0, Synplicity Inc.    u2 = s1 >> Uint<2>(2);          // alpha_2 
[4] ModelSim SE Plus 5.5,  Model Technology Inc.   s2 = T2 – u2; 
[5] Alliance 3.3.08i, Xilinx Inc.   s3 = s1 + s2; 
[6] Nallatech Ltd., Strathnuey PCI Card.   // update delay elements 
[7] Xilinx Spartan 2 XC2S150 chip.   T2 = oqc( s2, &withSaturation);      // C3 
[8] Xilinx Application Note: XAPP215(v1.0) June 28, 2000.   T1 = s3;                     // delayed s3 

Design tips for HDL implementation of Arithmetic functions, } 
 Steven Elzinga, Jeffrey Lin, Vinita Singhal. 

[9] A.Fettweis, Digital filter structures related to classical filter 
networks, A.E.U., band 25, pp. 79 - 89, 1971. VII. CONCLUSIONS 

 
We have shown that overflow detection and correction 

circuitry can, under certain conditions, completely be 
absorbed in the 4-input LUT's that are used for parallel 
addition with fast carry lines, when the choice of imple-
mentation is a Xilinx FPGA. The result is zero extra area 
cost. 

 

This can be obtained from a description in A|RT-C, 
which means that this high level description method 
does not introduce an area penalty when used together 
with a VHDL synthesizer for automatic generation of the 
Xilinx netlist. 
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