
Abstract— In most cases, a bandpass filter characteristic
is obtained by using a lowpass-to-bandpass frequency
transformation on a known lowpass transfer function. This
frequency transformation controls the location of passband
edges and transfer zero frequencies completely. Using the
“Vlach-Chebyshev approximation” [1] however, we are
able to specify the (Chebyshev) passband limits directly,
together with a free choice of transfer zero locations in the
stopband. In this way it is possible to design bandpass
transfer functions that cannot be obtained from lowpass
functions by a frequency transformation. We think this
method to be the only (and not very well known) analytical
method to obtain such bandpass characteristics. We show
how we designed wave digital realizations from the specifi-
cation, through a VHDL description and synthesis into a
Xilinx FPGA (Virtex-II).

Keywords— Bandpass filter design, Wave Digital Filters,
FPGA implementation.

I. INTRODUCTION

Usually, a bandpass filter characteristic is obtained by
using a lowpass-to-bandpass frequency transformation
starting from a normalized and known lowpass transfer
function. This frequency transformation determines the
location of passband edges and, moreover, transfer zero
frequencies, completely. This may impose design com-
promises, if the transformation would result in a sub op-
timal characteristic.

Earlier [2], we have shown how to design Chebyshev-
like lowpass filters with arbitrary stopband characteris-
tics. With the “Vlach-Chebyshev approximation” [1] we
can extent this to a Chebyshev bandpass with a free
choice of transmission zero frequencies in the stopband.

It thus becomes possible to design bandpass transfer
functions that cannot be obtained using frequency trans-
formations. We think this method to be the only (and not
very well known) analytical method to obtain such
bandpass characteristics in the time-continuous domain.

Since we are more interested in time-discrete
implementations, we use the well-known bilinear z-
transform to change domains. In the following, we de-
scribe two wave digital [3] choices for implementation,
e.g.

1. a wave digital equivalent of a lossless ladder,
2. a wave digital lattice structure.

Wave digital filters have been proved to be very robust
with a guaranteed linear stability even for poles very
close to the unit circle.

We show how we designed these realizations from the
specification, through a VHDL description through syn-
thesis into a Xilinx FPGA of the Virtex-II family [7]. We
will use a 6th order bandpass as an example, where par-
ticularly the straightforward design of the lattice imple-
mentation is notable. For both choices of implementa-
tion, we want to use the 18-bit hardware multipliers that
are present in the Virtex-II type of Xilinx FPGAs.

The accuracy of the implemented frequency character-
istic is shown by measurement with a spectrum analyzer.

II. THE VLACH-CHEBYSHEV BANDPASS

APPROXIMATION USAGE

Thanks to the Vlach-Chebyshev approximation, we
are able to directly specify the desired passband edges
together with the location of the transfer zeros. The
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method will find an equiripple approximation for the
passband and returns the roots of the denominator poly-
nomial of the transfer function H(s). There are several
ways to construct the complete transfer function.

As an example we have chosen a (nearly) symmetrical
digital bandpass of order 6. We specify the passband to
be between 0.15 0.02sf f = ± and two transmission

zeros at 0.15 0.05sf f = ± (and at 0 and 0.5) to demon-

strate the symmetry and the freedom of choice. The pass-
band ripple is specified to be 1 dB.

Since the Vlach-Chebyshev approximation is derived
to work in the time-continuous domain, these specifica-
tions have to be prewarped to that domain first through
the inverse bilinear transform. Characteristic frequency
values resulting from the approximation are shown in
figure 2, together with the resulting 6th order transfer
function H(s).
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Figure 1. The Vlach-Chebyshev approximation resulting
from the specifications.

III. THE RESULTING TRANSFER FUNCTIONS

H(s) AND H(z).

From the pole locations as given in figure 2 and the
zero frequencies, we can write down the transfer func-
tion in the s-domain to be of the form
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from which we can –as mentioned before by using the
bilinear transformation– derive the transfer function in
the z-domain:
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In figure 2, this transfer function is shown, while in
Appendix A the complete descriptions of H(s) and H(z)
are given with the values for ia and ib .
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Figure 2. Plot of H(z) to check whether the design speci-
fications are met.

Now there are numerous ways to realize this H(z), but
we will restrict ourselves to two implementations based
on the Wave Digital Filter theory [3].

Note that neither of the wave digital realizations really
need the description of H(z), since they are themselves
translations from H(s).

IV. WAVE DIGITAL LADDER REALIZATION

For the time-continuous H(s) we are able to find the
lossless ladder realization shown in figure 3.

Although the element values are highly unrealistic for
an implementation with practical lumped elements, this
is no limitation for using it as the prototype for a Wave
Digital Filter (WDF).
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Figure 3. Lossless ladder realization of the 6th order
bandpass transfer function.

Transforming this ladder into a wave digital ladder re-
alization by Fettweis’s methods is straightforward and
the figure 4 adapter structure can be obtained. This wave
digital realization has only 9 multiplier coefficients, with
values always between −2 and +2: three-port adapters 1
to 7 needing one multiplier each, with adapter 8 needing
two of them. This compares favorably with the number
of coefficients that would be needed if the transfer func-
tion had been realized with p.e. an IIR structure using
three 2nd order sections.

Figure 4. Wave Digital Filter translation of the lossless
ladder shown in Figure 3.

Inherent to this implementation method, however, is
the fact that for an optimal use of the input and output
wordsizes for sinusoidal signals, internal wordsizes have
to be scaled by several additional bits to avoid clipping
or overflows to occur.

We described the WD ladder using System Generator
for DSP 3.1 from Xilnx/MATLAB [5]. This program is
very useful for simulation, debugging and description of
the circuitry to be used, while promising bit true and cy-
cle true translation into hardware. We found this solution
not very attractive for fully automated designs, while in
its current state it still has some omissions which need
the use of top level VHDL files to set things straight, p.e.
for connecting clock signals.

V. WAVE DIGITAL LATTICE REALIZATION

Because the continuous time domain filter realization
is electrical symmetric (for the scattering matrix we have

11 22S S= ), we can find a symmetrical Lattice realization

too. A wave digital translation of this Lattice (LWDF)
leads to the structure with two parallel all-passes shown
in figure 5. The overall transfer function is determined
by the difference in phase characteristics in the two par-
allel arms. Both all-pass functions are realized with 2nd
order two-port adapter sections.

The three blocks H in figure 5a all have the structure
shown in figure 5b. Each adapter shown in these struc-
tures has the architecture of figure 5c. It means that this
Lattice realization needs only 6 multiplier coefficients,
which equals the filter order.

According to Gazsi [4], these coefficients simply fol-
low from the roots of the denominator of H(s) in a
straightforward way, with values between 0 and +1. Al-
though Gazsi’s formulas are derived for odd order low-
pass and highpass filters only, his theory holds true for
our type of bandpass filter.

Figure 5a. Structure of the Lattice Wave Digital Filter.

Figures 5b and 5c. Details of the 2nd order adapter
sections and each adapter’s architecture.
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VI. IMPLEMENTATION IN XILINX FPGA: VIRTEX-II

Because the WD Lattice structure is a highly regular
and predictable architecture, automatic generation of
complete VHDL descriptions is feasible.

The entire design trajectory (shown in figure 6) has
been built to work under MATLAB program control. To
design the Lattice version of our example filter, we just
enter the command-line

lwdf2XDK(6,1,[0.13 0.17],[0.1 0.2])

From these filter design parameters we calculate the
Lattice coefficients and then build the VHDL description
file. This description, together with some pre-written
files, is then synthesized (using Synplify Pro from Syn-
plicity) and placed and routed onto the FPGA present on
the development kit (using ISE5.2i from Xilinx). Next,
the resulting bitfile is downloaded into the FPGA itself.
The clock frequency to be used, can again be specified
and changed at will from MATLAB.

A. XtremeDSP Development Kit

The bitfile is tailored to fit in the User FPGA of an
XtremeDSP Development Kit. This board is a develop-
ment from Nallatech Ltd. that is distributed by Xilinx
[6,7]. For our use, it features two ADC channels (14 bits,
up to 65 MSPS), two DAC channels (also 14 bits, up to
160 MSPS), a Virtex-II user programmable XC2V3000
FPGA with a.o. 96 embedded 18x18 bits multipliers. To
communicate with the board from MATLAB, Nallatech
offers the FUSE MATLAB Toolbox [8].

B. FPGA layout.

In figure 7 we show a layout picture of the 6th order
Lattice bandpass filter mapped onto the Virtex-II chip.

As an option in our program, a designer can choose
whether to map a multiplier on a MULT18X18 embed-
ded Virtex multiplier, or to use LUTs for shift and add
synthesized multipliers, e.g. to preserve the hardwired
ones for other tasks in a complex design. In the layout
figure given here, one multiplier which only showed
three 1's in its 18 bit binary value was constructed using
LUTs. The complete filter was constrained to be located
in the lower right corner of the FPGA (which was empty
except for the filter) to keep connections to the prede-
fined I/O pins relatively short. Less than 1.5% of the
available slices are taken by the filter.

Without any optimization, the filter performed well for
sample frequencies up to 30 MSPS.

Figure 6. The design trajectory, illustrating that
MATLAB is under control from input specification up to
plot readback.

Figure 7. Zoomed-in layout of the LWDF, extracted from
the Xilinx floorplanner.

18x18 bit multipliers
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C. Spectrum analyzer results

In figure 8 we show a measured frequency characteris-
tic, with the sampling frequency set to 15 MHz.

The passband characteristic frequencies were exactly
at their calculated positions, while the two stopband ze-
ros were found to deviate less than 0.1% from the speci-
fied values. Due to Sample&Hold distortion a slight roll-
off of 0.01 dB could be seen between the left− and the
rightmost peak in the passband.

VII. CONCLUSIONS

It has been shown, that we are able to design bandpass
filters with a Chebyshev equiripple approximation of the
passband and transmission zeros at arbitrary frequencies
in the stopbands, and that these designs can be realized
as Wave Digital Filters. Gazsi [4] has shown that the
Lattice coefficients can be calculated easily. Also, the
Lattice structure is notably simpler compared to the
wave digital ladder. The coefficients in the Lattice need
more accuracy because the Lattice has worse sensitivity
properties in the stopband compared to the ladder. The
Lattice can be pipelined very easily, making a very high
sampling frequency possible. FPGA’s turn out to be an
ideal platform for implementation of Wave Digital Fil-
ters.

The design trajectory that has been illustrated is part
of a MATLAB system of programs meant to make wave
digital filters more easily designed and used. This system
will be made available on an internet site soon.

Figure 8. Spectrum analyzer result showing the funda-
mental interval of the LWDF’s magnitude transfer func-
tion for a sampling frequency of 15 MSPS.

REFERENCES

[1] J. Vlach, Computerized Approximation and Synthesis of Linear
Networks, John Wiley & Sons, Inc.(1969), ISBN 47190870 3.

[2] R. Nouta & H.J. Lincklaen Arriëns, On the Use of the Sharpe-
Chebyshev Rational Function Approximation, Proc. of ProRISC
2002.

[3] A. Fettweis, Wave Digital Filters: Theory and Practice, Proc.
IEEE (Vol 74, No 2), pp. 270-327 (Feb 1986)

[4] L. Gazsi, Explicit Formulas for Lattice Wave Digital Filters,
IEEE Trans on CAS, Vol CAS-32, No.1, Jan 85

[5] Xilinx System Generator for DSP version 3.1, Xilinx Inc.
[6] XtremeDSP Development Kit User Guide, Nallatech Ltd.
[7] Virtex-II Platform FPGA Handbook (UG002), Xilinx,Inc.
[8] FUSE MATLAB Toolbox Developers Guide, Nallatech Ltd.

A. APPENDIX

The transfer functions H(s) and H(z) that have been found for the example filter are:
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