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Implementation of an 18-point IMDCT on FPGA
Huibert J. Lincklaen Arriëns, June 2005 ( last update: July 1, 2005 ).

1 Introduction

Given the tremendous interest in MP3 decoders, in which short Inverse Modified Discrete Cosine Transforms
(IMDCTs) are applied (on blocks of either 12 or 36 samples), recently several publications [Bri01], [Lee01],
[Nik04] have addressed the issues of MDCTs and IMDCTs . Generally, these publications are written to obtain an
efficient solution in a software environment and are mainly concerned with the MDCT. The IMDCT is said to be
obtained by reversed operations and is not described in detail.

In our research, we are interested in hardware implementations for stand-alone or co-processor like architectures
to support and speed-up the software. In the following, the 18-point IMDCT (block size 36) for implementation on
an FPGA will be described.

2 The IMDCT

2.1 Definition

The backward MDCT or IMDCT is defined as

x̂m =
2

N

(N/2)− 1X
k=0
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µ
2m+ 1+

N

2

¶¸
, with m = 0, 1, 2, · · · , N − 1. (1)

Generally, since we are dealing with a lapped transform, the recovered data sequence {x̂m} does not correspond
to the original data sequence {xm}. To obtain the correct {xm} the outputs of consecutive transforms have to be
combined.

It can be seen that N/2 (non redundant) input values result in N output values (of course the MDCT reads N
input values and results in N/2 output values). Since it is not completely clear whether Equation 1 should be called
an N-point IMDCT or an N/2-point IMDCT, in the following we’ll identify these transforms given the number of
inputs. We will be describing an 18-point IMDCT that delivers 36 output values, thus length N will be 36.

2.2 Literature

Especially interesting is the article from Britanak and Rao[Bri01], who described a detailed algorithm to calculate
12 and 36 point MDCTs. In the same year, Szu-Wei Lee [Lee01] proposed a different approach, which was claimed
to cost less multiplications and additions than Britanak’s algorithm. However, Lee’s approach is less suitable for a
hardware implementation since it uses several recursive statements that consequently cannot be synthesized with
concurrently operating hardware.

More recently, Nikolajevic and Fettweis [Nik04] discovered that Britanak’s implementation was not optimal
and could be improved upon, resulting in about the same number of multiplications and additions as were needed
by Lee’s solution. In this case, however, without any recursiveness.

Still, all proposed soltions are mainly aimed at an in-depth treatment of the forward MDCT while being
relatively incomplete in their description of the IMDCT. Generally the conclusions are that all operations should be
reversed.

In the following, a description will be given of a dedicated hardware implementation of an 18-point IMDCT
which can be used in an MP3 decoder (e.g. for retrieving 36 point time samples out of 18 frequency lines).
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2.3 Realization

Our goal is to find a realization similar to those used in the afformentioned MDCT descriptions. The main reasons
therefore are

• a similar structure may facilitate resource resusage, and

• the forward DCT-II ’module’ that Britanak describes for his MDCT solution needs less resources than his
inverse DCT-II to be used in his IMDCT, viz. 10 multiplications and 34 additions against rep. 12 and 36.

Figure 1 shows the basic setup that will be used for our IMDCT.
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Figure 1: Basic setup of the IMDCT.

Since we defined N = 36, we start from an 18 values input sequence: {X0,X1, · · · ,X17}.

The outputs of the ’rotations’-block are given by:
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The leftmost ’combine and shuffle’-block is thus nothing more than a reverse ordering of the second half of the
input data.

The cos- and sin- angles θ =
π

2N
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π

72
,
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72
, · · · , 17π
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.

Next, we perform a 9-point DCT-II on the an vector and a 9-point DST-II on the bn vector, which delivers us

• Zn = DCT-II_9p (an)

( with the DCT-II_9p given by Zj =
8X

n=0

an · cos
∙
9jπ

µ
n+

1

2

¶¸
, j = 0, 1, · · · , 8.).

• Z(N/4)−1+n = DST-II_9p (bn):

[Wan82] described that this DST_II can favourably be performed by a similar DCT-II_9p as has been used to
obtain Zn, considering that the input and output data need to be negated partly, and be reordered at the output
(Figure 2). The procedure to follow here is: first, negate the even terms (n = 0, 2, · · · , N/4− 1) of bn

– b0n= even = −bn= even, then

– Z(N/2)−1−n = DCT-II_9p (b0n)
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Figure 2: Constructing a DST-II from the DCT-II.

In the rightmost ’combine and shuffle’-block, yk can be derived from these Z’s as

yk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Zk , for k = 0 and k = N/2− 1
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2
, for k = 2, 4, 6, · · · ,N/2− 2

−ZN
4 −1+

k+1
2
− Zk+1

2
, for k = 1, 3, 5, · · · ,N/2− 3

Finally, {x̂m} can be found from

x̂m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−yN
4 −1−m

, for m = 0, 1, · · · , N/4− 1

y
m−N4

, for m = N/4, · · · , 3N/4− 1

y5N
4 −1−m

, for m = 3N/4, · · · , N − 1

When for computing the 9-point DCT-II’s, a slightly modified version of Britanak’s description (see Appendix
A) is used, the above leads to a total number of 52 multiplications and 102 additions.

2.4 Implementation

For the hardware implementation, we assume the availability of multipliers, ALUs and registers. The ALUs can be
instructed to either act as an adder or as a subtractor, depending on a single ’opcode’ bit.

To avoid negations –which would cost rather ineffective hardware– the algorithm above has been rewritten
slightly. In fact, no negations are needed upto and including the calculation of the 18 yk values. These yk’s will also
be the output of this implementation. It is assumed that extending yk to x̂m can be taken care of in the hardware or
software following this IMDCT block by a.o. correctly indexing in the windowing calculations. The final set-up
that was to be implemented is shown in Figure 3.

Several programs and intermediate programs have been written to stepwise verify the design process.

1. For the ultimate reference, data for the IMDCT can be generated with the MATLAB program imdct_def.m ,
which is a one-to-one calculation of the IMDCT definition formula given in Equation 1.

2. Then, based on Britanak’s elaborate description of his DCT-II algorithm (see Appendix A), a text file
imdct_18p_sh.cir has been created (a sequence graph with I/O’s is shown in Figure 4). By dividing all cos-
and sin-coefficients by N/2 the scaling factor needs no additional multipliers.

3. This cir-file was first checked by reading and evaluating it with my_imdct_18p_ref.m which in fact just
provides the input values for the cir-file. This resulted in the same floating point output values as has been
found as reference.

4. Next, our in-house scheduling software (schedGUI.m) used this cir-file to find a resource constrained
scheduling scheme, based on the List Scheduling Method. This scheduling software generates
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Figure 3: Efficient implementation of an 18 point IMDCT. Full lines represent a transfer factor+1, dotted lines a transfer
factor −1, and a° represents an addition (or subtraction)
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– a MATLAB testbench for debugging and evaluation purposes (scheduled, fixed point output),

– VHDL code for synthesis and

– a VHDL testbench that should result in bit-true and state-true output when compared with the MATLAB
testbench.

The version of the software used, had first been augmented to be able to translate multiplications by powers of 2
into arithmetic shifts. In hardware this leads to only differently connected (possibly duplicated to cope with sign
extension) signal connections, thus saving on hardware multiplier usage. There is another benefit made possible
by this feature, viz. that we can scale the cos- and sin-coefficients by N instead of N/2, and perform the divide
by 2 at the very end of the scheme by a right shift of all yk values. This will improve the overall accuracy of the
implementation as will be shown later on.

A second modification in the new version is that now each resource (multiplier, ALU) is followed by its own
register (asynchronous reset, clock-enable input) and needs only one clock cycle to compute its output. By properly
writing VHDL code tailored to Xilinx Spartan-3 FPGAs, the registers following the multipliers are incorporated
in the dedicated multiplier hardware (MUL18X18S components will be instantiated), so again some area will be
saved. If intermediate computational results that last longer than one clock state.need to be stored, this will invoke
additional registers, also with an async reset and a clock-enable

3 Design Space

Using the scheduling software with sets of different multiplier/ALU combinations can give an indication about
the feasible number of Clock States against the number of resources (= area) that are needed (see Table 1).

Table 1 xx/yy indicates: number of States/number of additional Registers
ALUs

MULtipliers 1 2 3 4 5 6 7 8 9 10

1 109/26 61/23 55/20 54/19 53/17 53/18 53/18 53/18 53/18 53/18
2 106/26 55/24 39/23 31/20 29/18 29/17 28/15 28/15 28/15 28/16
3 105/26 54/24 37/22 29/21 25/19 22/17 21/16 20/15 20/16 19/13
4 104/26 53/24 37/22 28/20 24/18 20/18 18/16 17/15 16/14 16/16
5 104/26 53/24 36/22 28/20 23/19 20/17 18/15 16/14 16/14 14/13
6 104/26 53/24 36/22 28/20 23/19 19/17 17/16 16/16 14/15 13/12

Note that for the Spartan 3 FPGAs a number of dedicated multipliers are already available on the dye (p.e.
40 18x18 bits multipliers on an XC3S2000 device) and that they are either in use by other parts of the hardware
or unused and thus available to us. Also, the number of bits used for data in our IMDCT determines how much
hardware multipliers are combined to calculate the results of one multiplication, e.g. a 32 bits data buswidth takes
up 4 multiplier components per multiplication).

As a starting point, a setup was chosen with 4 multipliers and 8 ALUs (functioning as an adder or as a
subtractor). According to the scheduling process, the outputs of the IMDCT will be available after 17 clock states
while15 additional register banks will be needed.

Figure 5 shows the resulting Scheduled Sequence Graph (SSG), and Figure 6 depicts the distribution of the
resources versus the clock states.

Also shown is a map of the resource usage and a map of the additional registers in resp. Figures 7 and 8.

The two other bold faced combinations (2MULs,4ALUs and 2MULs,5ALUs) in Table 1 are referred to later on
in this document.
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Figure 4: Interconnection of the operations and I/Os.
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Figure 5: Scheduled Sequence Graph (SSG) after application of the List Scheduling Method with 4 multipliers and 8
ALUs.

Figure 6: Distribution of the available resources.

HJLA, June-2005 7



Internal Report, No. CAS-LA05.1

Figure 7: Mapping of the operations on the available resources according to the List Scheduling Method.
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Figure 8: Additional registers needed to account for the lifetimes of computational results.
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4 Verification

The input values for the tests mentioned hereafter were choosen to be Xk =
k

20
with k = 1, 2, · · · , 18.

In Table 2, the (18 relevant) reference output values yk for k = 0, 1, · · · , 17 which correspond with x̂m for
m = 9, 10, · · · , 26 are listed in the leftmost column.
The middle columns (decimal and hex representations) show the output of the generated MATLAB testbench when
all calculations are performed in a fixed point format: the total buswidth here is 32 bits, of which the lower 30
bits are regarded to represent the binary fraction. All –scaled– multiplication constants and inputs have also been
converted to the [32 30] format using a rounding function.

The relative error between both outputs,
ytestbench − yref

yref
, is listed in the rightmost column.

Figure 9 lists the values that result from simulation of the VHDL files with the ModelSim simulator. They can
be seen to be exactly the same as the ones predicted by MATLAB. Figure 10 additionally shows a timing simulation
of a ’half scale’ implementation. Appendix D finally, shows the input and resulting output after simulation in
graphical format.

In Table 3 the effect of the distributed scaling can be seen, viz. using sin- and cos-coefficients scaled by only
half the scaling factor and a final shift right of the output values.It would be tempting to try to obtain even better
results by additional left and right shifting, and this will indeed succeed for the input values used throughout
this report. For a worst case input consisting of all ones (all frequencies present at maximum level), however,
overflow in the ALUs will occur. Expanding the buswidth can overcome this problem, but it doesn’t seem worth
the additional area since the errors won’t drop significantly being determined by the number of fraction bits of the
final result.

In Figure 11 can be seen what the effect is of different fixed point formats on the relative error, both for the ’full
scale’ and the ’half scale’ methods.

Table 2 Table 3
reference MATLAB testbench ( 2/N ) relative error MATLAB ( 4/N À 1 ) relative error

(floating point) (fixed point calculations) ∗10−6 (fixed point calculations) ∗10−7
[32 30.0] [32 30.0]

0.0257493 0.0257493 01A5E048 0.0564 01A5E048 0.5643
−0.0258239 −0.0258239 FE58E682 0.0915 FE58E683 0.5546
0.0264760 0.0264760 01B1C858 0.1013 01B1C855 −0.0423
−0.0267118 −0.0267118 FE4A5A9F 0.0988 FE4A5AA0 0.6391
0.0281228 0.0281228 01CCC39F −0.1054 01CCC3A0 −0.7226
−0.0285599 −0.0285599 FE2C131C −0.0565 FE2C1319 0.4136
0.0309902 0.0309902 01FBBE40 0.0458 01FBBE3E −0.1432
−0.0317155 −0.0317155 FDF85FA4 0.1003 FDF85FA6 0.4155
0.0357135 0.0357135 02492176 0.0439 02492174 −0.0825
−0.0369108 −0.0369108 FDA340C5 0.0859 FDA340C7 0.3539
0.0436944 0.0436944 02CBE395 0.0448 02CBE393 0.0213
−0.0457927 −0.0457927 FD11BB9B 0.0259 FD11BB9C 0.0551
0.0585350 0.0585350 03BF099F −0.0267 03BF09A0 −0.1078
−0.0627618 −0.0627618 FBFBB5E1 −0.0596 FBFBB5DF −0.2988
0.0927715 0.0927715 05EFF80B −0.0218 05EFF80C −0.1179
−0.1042416 −0.1042416 F9541B1D −0.0043 F9541B1C 0.0464
−0.2372648 −0.2372648 0F2F58C7 −0.0123 0F2F58CA −0.0053
−0.2244197 −0.2244197 F1A31B57 0.0365 F1A31B5C 0.1580
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a) b)

Figure 9: Output values according to Modelsim after simulation of the testbench until the done-bit is high (all states
succesfully executed). All cos- and sin -coefficients are divided by a) the scaling factor N/2 and b) divided by N/4 with
an additional (SHR 1) at the output.
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Figure 10: Output of timing simulation with ModelSim.

a) b)

Figure 11: Errors for some different buswidths and number of fraction bits if all cos- and sin -coefficients are divided
by a) the scaling factor N/2 and b) if divided by N/4 with an additional (SHR 1) at the output.

12 HJLA, June-2005



Internal Report, No. CAS-LA05.1

5 Hardware Utilization

In Table 4 the hardware utilization of a number of synthesized implementations, differing in design parameters,
are listed.

All implementations have been scheduled with the List Scheduling Method, assuming 1 clock cycle for both
multiplications and additions/subtractions (L11xxxx). The other parameters were:

L1148_18: 4 multipliers, 8 ALUs, one scale factor of 18
L1148_9_2: 4 multipliers, 8 ALUs, distributed scale factors 9 and 2
L1125_9_2: 2 multipliers, 5 ALUs, distributed scale factors 9 and 2
L1124_9_2: 2 multipliers, 4 ALUs, distributed scale factors 9 and 2

In all cases, the target device was a Xilinx Spartan 3 XC3S2000−5 FG676 FPGA.
Synthesis was done with Synplfy Pro 8.0 from Synplicity, Inc. in the Auto Constrained Frequency mode, which

results in a higher estimated frequency but also more used resources than the default 1MHz mode (generally, a
higher estimated frequency involves more of the FPGA’s components).

It turns out that the ’_9_2’ designs, apart from being slightly more accurate, also need slightly less area than the
’_18’ designs.

Table 4
L1148_18 L1148_9_2 L1125_9_2 L1124_9_2

MULT18x18S 16 16 8 8
Total FDs 774 979 811 861

Total MUXFs 1794 1108 981 989
Total LUTs 7279 (17%) 6632 (16%) 5322 (12%) 5788 (14%)

Estimated Frequency [MHz] 60.2 58.7 61.4 63.4

Determined by the scheduler (see also Table 1, repeated here for convenience)

Number of Clock States 17 17 29 31
Additional Registers 15 15 18 20

6 Conclusions

It is shown that, based on the basic scheme given in Figure 1 a synthesizable, hardware IMDCT implementation
can be realized. The implementation described here needs less computations than the ones found in the literature
up to now (see Table 5). Although the design was intended to be optimal from a hardware point of view, it thus
may also be interesting for software implementations. In that case –when floating point calculations of exceptable
accuracy are available, and/or when multiplications take more cycles then additions – it may be advantageous to
replace the rotations as described here (viz. 4 muls/2 adds) by their 3muls/3adds equivalents. This will result in
figures in Table 4 that are better comparible to those of the other software implementations, i.e. resp. 11/21 and
43/111.

Table 5
IMDCT N = 12 N = 36

resources mul/add mul/add

Britanak 13/33 51/151 *)
S-W. Lee 11/23 43/115
Nikolajevic 13/21 47/115 **)
this implementation 14/18 52/102 ***)

*) In some publications erronuously quoted as 47/151, since Britanak himself mentions a number of 51/151.
**) This should certainly also be 51 multiplications
***) ... or resp. 11/21 and 43/111 when the 4/2 rotations are replaced by their 3/3 equivalents.
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7 Future Work

There are still a few questions that remain

• Can anyone write down the mathematical prove that the algorithm given above is correct, and –hopefully– in
any way optimal?

• Is it possible to re-use the same hardware of the 18-point IMDCT for the 6-point version in one circuit?

• How would an MDCT/IMDCT combination look like?

• Is it possible to efficiently combine the IMDCT with the circuitry following it in the MP3 decoder, e.g. the
windowing and reconstruction process, and the 32-point MDCT as a whole?

There are two interesting articles originating from completely different approaches, that need further
investigation. They are

• Mu-Huo Cheng and Yu_Hsin Hsu, "Fast IMDCT and DCT Algorithms – A Matrix Approach", IEEE Trans on
Signal Processing, Vol. 51, No. 1, January 2003

and

• Oraintara, S. & Krishnan, T.: " The integer MDCT and its application in the MPEG layer III audio",
Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS ’03. 25-28 May
2003.
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Appendix A. 9-Point forward DCT-II Module

Britanak [Bri01] proposed the following algorithm to compute the 9-Point DCT-II.
Given an input data sequence {x0, x1, · · · , x8}, the output data sequence {CII

0 , CII
1 , · · · , CII

8 } can be computed
with

a1 = x3 + x5 a11 = a10 + a7
a2 = x3 − x5 a12 = a3 − a7
a3 = x6 + x2 a13 = a1 − a7
a4 = x6 − x2 a14 = a1 − a3
a5 = x1 + x7 a15 = a2 − a4
a6 = x1 − x7 a16 = a15 + a8
a7 = x8 + x0 a17 = a4 + a8
a8 = x8 − x0 a18 = a2 − a8
a9 = x4 + a5 a19 = a2 + a4
a10 = a1 + a3

m1 = −d1 · a6 m6 = −d5 · a14
m2 = d2 · a5 m7 = −d1 · a16
m3 = d2 · a11 m8 = −d6 · a17
m4 = −d3 · a12 m9 = −d7 · a18
m5 = −d4 · a13 m10 = −d8 · a19

a20 = x4 −m2 a24 = m1 +m8

a21 = a20 +m4 a25 = m1 −m8

a22 = a20 −m4 a26 = m1 +m9

a23 = a20 +m5

CII
0 = a9 + a11 CII

5 = a25 −m9

CII
1 = m10 − a26 CII

6 =m3 − a9
CII
2 = m6 − a21 CII

7 = a24 +m10

CII
3 = m7 CII

8 = a23 +m6

CII
4 = a22 −m5

where

d1 =

√
3

2
d2 = 0.5 d3 = cos

µ
8π

9

¶
d4 = cos

µ
4π

9

¶

d5 = cos

µ
2π

9

¶
d6 = sin

µ
8π

9

¶
d7 = sin

µ
4π

9

¶
d8 = sin

µ
2π

9

¶

needing a total of 10 multiplications and 34 additions.

Since d2 = 0.5 (or 2−1), m2 and m3 can be discarded when a20 and CII
6 are changed into respectively

a20 = x4 − (a5 >> 1)
CII
6 = (a11 >> 1)− a9

Then, noting that the implementation of an arithmetic shift on (FPGA) hardware doesn’t involve any resources, the
result will be 8 multiplications and 34 additions.
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Appendix B. Description of the cir-file

This is the listing of the cir-file that has been used with sin- and cos-coefficients scaled by
4

N
(Note the additional

shifts at the very and of the listing). These coefficients are identified with n_sin_01, n_cos_01, etc. and are
passed through the I/O connections in the VHDL-file in the fixed point format specified for a particular design.

iocDef = ’XYdn’; % which means:

% Variables starting with an X are defined to be inputs,

% starting with an Y are outputs, with a d or n are constant

% coefficients, while all others are operations (multiplier

% or ALU resources)

p0 = X00 * n_cos_01;
p1 = X01 * n_cos_03;
p2 = X02 * n_cos_05;
p3 = X03 * n_cos_07;
p4 = X04 * n_cos_09;
p5 = X05 * n_cos_11;
p6 = X06 * n_cos_13;
p7 = X07 * n_cos_15;
p8 = X08 * n_cos_17;
% -- reverse ordering of X00 - X17 done here

p9 = X17 * n_sin_01;
p10 = X16 * n_sin_03;
p11 = X15 * n_sin_05;
p12 = X14 * n_sin_07;
p13 = X13 * n_sin_09;
p14 = X12 * n_sin_11;
p15 = X11 * n_sin_13;
p16 = X10 * n_sin_15;
p17 = X09 * n_sin_17;

a0 = p0 + p9;
a1 = p1 + p10;
a2 = p2 + p11;
a3 = p3 + p12;
a4 = p4 + p13;
a5 = p5 + p14;
a6 = p6 + p15;
a7 = p7 + p16;
a8 = p8 + p17;

q0 = X00 * n_sin_01;
q1 = X01 * n_sin_03;
q2 = X02 * n_sin_05;
q3 = X03 * n_sin_07;
q4 = X04 * n_sin_09;
q5 = X05 * n_sin_11;
q6 = X06 * n_sin_13;
q7 = X07 * n_sin_15;
q8 = X08 * n_sin_17;
% -- reverse ordering of X00 - X17 done here, too

q9 = X17 * n_cos_01;
q10 = X16 * n_cos_03;
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q11 = X15 * n_cos_05;
q12 = X14 * n_cos_07;
q13 = X13 * n_cos_09;
q14 = X12 * n_cos_11;
q15 = X11 * n_cos_13;
q16 = X10 * n_cos_15;
q17 = X09 * n_cos_17;

b0 = q0 - q9;
b2 = q2 - q11;
b4 = q4 - q13;
b6 = q6 - q15;
b8 = q8 - q17;

%-----

b1 = q10 - q1;
b3 = q12 - q3;
b5 = q14 - q5;
b7 = q16 - q7;

% DCT_II

v01 = a3 + a5;
v02 = a3 - a5;
v03 = a6 + a2;
v04 = a6 - a2;
v05 = a1 + a7;
v06 = a1 - a7;
v07 = a8 + a0;
v08 = a8 - a0;
v09 = a4 + v05;
v10 = v01 + v03;
v11 = v10 + v07;
v12 = v03 - v07;
v13 = v01 - v07;
v14 = v01 - v03;
v15 = v02 - v04;
v16 = v15 + v08;
v17 = v04 + v08;
v18 = v02 - v08;
v19 = v02 + v04;

m01 = d0 * v06;
m04 = d2 * v12; % m02 and m03 replaced by shift rights

m05 = d3 * v13;
m06 = d4 * v14;
y03 = d0 * v16; % m07 directly connected to y03

m08 = d5 * v17;
m09 = d6 * v18;
m10 = d7 * v19;

v20 = a4 - (v05 >> 1); % m02 -> v05/2;
v21 = v20 + m04;
v22 = v20 - m04;
v23 = v20 + m05;
v24 = m01 + m08;
v25 = m01 - m08;
v26 = m01 + m09;

y00 = v09 + v11;
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y01 = m10 - v26;
y02 = m06 - v21;
y04 = v22 - m05; % y03 already defined to replace m07

y05 = v25 - m09;
y06 = (v11 >> 1) - v09; % m03 -> v11/2

y07 = v24 + m10;
y08 = v23 + m06;

% modified DST_II

w01 = b3 + b5;
w02 = b3 - b5;
w03 = b6 + b2;
w04 = b6 - b2;
w05 = b1 + b7;
w06 = b1 - b7;
w07 = b8 + b0;
w08 = b8 - b0;
w09 = b4 + w05;
w10 = w01 + w03;
w11 = w10 + w07;
w12 = w03 - w07;
w13 = w01 - w07;
w14 = w01 - w03;
w15 = w02 - w04;
w16 = w15 + w08;
w17 = w04 + w08;
w18 = w02 - w08;
w19 = w02 + w04;

k01 = d0 * w06;
k04 = d2 * w12; % k02 and k03 replaced by shift rights

k05 = d3 * w13;
k06 = d4 * w14;
z03 = d0 * w16; % k07 directly connected to z03

k08 = d5 * w17;
k09 = d6 * w18;
k10 = d7 * w19;

w20 = b4 - (w05 >> 1); % k02 -> w05/2

w21 = w20 + k04;
w22 = w20 - k04;
w23 = w20 + k05;
w24 = k01 + k08;
w25 = k01 - k08;
w26 = k01 + k09;

z00 = w09 + w11;
z01 = k10 - w26;
z02 = k06 - w21;
z04 = w22 - k05; % z03 already defined to replace k07

z05 = w25 - k09;
z06 = (w11 >> 1) - w09; % k03 -> w11/2

z07 = w24 + k10;
z08 = w23 + k06;

y1 = y08 - z01;
y2 = y08 + z01;
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y3 = y07 - z02;
y4 = y07 + z02;
y5 = y06 - z03;
y6 = y06 + z03;
y7 = y05 - z04;
y8 = y05 + z04;
y9 = y04 - z05;

y10 = y04 + z05;
y11 = y03 - z06;
y12 = y03 + z06;
y13 = y02 - z07;
y14 = y02 + z07;
y15 = y01 - z08;
y16 = y01 + z08;

Y00 = (z00 >> 1);
Y01 = ( y1 >> 1);
Y02 = ( y2 >> 1);
Y03 = ( y3 >> 1);
Y04 = ( y4 >> 1);
Y05 = ( y5 >> 1);
Y06 = ( y6 >> 1);
Y07 = ( y7 >> 1);
Y08 = ( y8 >> 1);
Y09 = ( y9 >> 1);
Y10 = (y10 >> 1);
Y11 = (y11 >> 1);
Y12 = (y12 >> 1);
Y13 = (y13 >> 1);
Y14 = (y14 >> 1);
Y15 = (y15 >> 1);
Y16 = (y16 >> 1);
Y17 = (y00 >> 1);
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Appendix C. The VHDL entity of the Scheduled Sequence Graph (SSG)

The automatically generated description of the SSG entity will look as follows.

entity imdct_18p_sh_9_2_SSG is

generic ( NX_g : positive := 32;
M_g : positive := 30;
MUL_delay_g : Time := 5 ns;
ALU_delay_g : Time := 2 ns;
REG_delay_g : Time := 2 ns );

port ( clk : in std_logic;
reset : in std_logic;
start : in std_logic;
X00 : in std_logic_vector(NX_g-1 downto 0);
X01 : in std_logic_vector(NX_g-1 downto 0);
X02 : in std_logic_vector(NX_g-1 downto 0);
X03 : in std_logic_vector(NX_g-1 downto 0);
X04 : in std_logic_vector(NX_g-1 downto 0);
X05 : in std_logic_vector(NX_g-1 downto 0);
X06 : in std_logic_vector(NX_g-1 downto 0);
X07 : in std_logic_vector(NX_g-1 downto 0);
X08 : in std_logic_vector(NX_g-1 downto 0);
X09 : in std_logic_vector(NX_g-1 downto 0);
X10 : in std_logic_vector(NX_g-1 downto 0);
X11 : in std_logic_vector(NX_g-1 downto 0);
X12 : in std_logic_vector(NX_g-1 downto 0);
X13 : in std_logic_vector(NX_g-1 downto 0);
X14 : in std_logic_vector(NX_g-1 downto 0);
X15 : in std_logic_vector(NX_g-1 downto 0);
X16 : in std_logic_vector(NX_g-1 downto 0);
X17 : in std_logic_vector(NX_g-1 downto 0);
Y00 : out std_logic_vector(NX_g-1 downto 0);
Y01 : out std_logic_vector(NX_g-1 downto 0);
Y02 : out std_logic_vector(NX_g-1 downto 0);
Y03 : out std_logic_vector(NX_g-1 downto 0);
Y04 : out std_logic_vector(NX_g-1 downto 0);
Y05 : out std_logic_vector(NX_g-1 downto 0);
Y06 : out std_logic_vector(NX_g-1 downto 0);
Y07 : out std_logic_vector(NX_g-1 downto 0);
Y08 : out std_logic_vector(NX_g-1 downto 0);
Y09 : out std_logic_vector(NX_g-1 downto 0);
Y10 : out std_logic_vector(NX_g-1 downto 0);
Y11 : out std_logic_vector(NX_g-1 downto 0);
Y12 : out std_logic_vector(NX_g-1 downto 0);
Y13 : out std_logic_vector(NX_g-1 downto 0);
Y14 : out std_logic_vector(NX_g-1 downto 0);
Y15 : out std_logic_vector(NX_g-1 downto 0);
Y16 : out std_logic_vector(NX_g-1 downto 0);
Y17 : out std_logic_vector(NX_g-1 downto 0);
done : out std_logic;
error : out std_logic

);
end imdct_18p_sh_9_2_SSG;

The computations are started by a positive going edge at the start input, while the done output goes high
when the result is available.
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Appendix D. Graphical view of simulation output

In Figure 12, the output of the ModelSim VHDL simulator is shown in graphical format for an input for the
simulator given with

Xk =

⎧⎨⎩ 1 , for k = 0

0 , for k = 1, 2, · · · , N/2− 1
.

VHDL simulation with ModelSim

plot_OUT.m   (MATLAB)

.INP-file

.OUT-file

Figure 12: Simulation output for an input vector with X0 = 1 and X1···17 = 0 (first basis function).
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