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Introduction. 
 
This Toolbox contains two GUIs and a number of functions to design continuous-time and discrete-
time filters, featuring the design of Wave Digital and Lattice Wave Digital filters. Although (nearly) all 
functions are accessible through the GUIs, we start with giving a short description of some of the 
separate functions to indicate our way of thinking and to clarify some of the notations used. 
 
We will not go into the details of filter theory since numerous excellent books have already been 
written about this subject. We assume the reader’s acquaintance with common denominations like 
pass-band (ripple), transition-band, stop-band, etc. We also assume a reasonable experience with the 
MATLAB interfaces. 
Even though, the toolbox presented here will turn out to be easy to use, even without an in-depth 
knowledge of filter theory.  
 
At this moment the toolbox includes functions for designs based on a number of classical filter 
approximations, viz. Butterworth, Chebyshev, Inverse Chebyshev and Cauer designs.  
Next to these, an approximation method with more freedom for tailoring the stop-band, described by 
Jiri Vlach [Vla69], has been added. This method also enables the design of filters using unit elements, 
in which case these unit elements will contribute to a better approximation of the ideal filter 
characteristic.  
The filters above are all classified as Infinite Impulse Response (IIR) filters. With the toolbox, two 
types of discrete-time structures can be created that show excellent performance for IIR realizations. 
These structures, Wave Digital Filters (WDFs) and Lattice Wave Digital Filters (LWDFs) [Ant79] 
[Gaz86][Law90][Nou79], have been derived using the less-known wave digital theory. For an 
exhaustive description of these (L)WDFs, the reader is referred to the (invited) paper by Fettweis 
[Fet86].  
 
Unlike filter theory in its early days where usually attenuation functions where used as a reference, 
we prefer to work with transfer function: for plots these are restricted to magnitude and phase 
characteristics, although it is of course possible to also work with phase delays and group delays, but 
this is left to the user. Being MATLAB functions, there are no reasons not to extent the number of 
functions with more elaborate or esoteric approximations, plot-functions, etc. 
 
Included with the Toolbox are a number of example m-files that can help in getting acquainted with 
the syntax and the possibilities of the toolbox. Most of the following designs can be found in one of the 
example files. 
 
In the following chapters we will briefly show how the toolbox functions work, and indicate what can 
be done with them, by means of listing snippets of code and the resulting pictures and command 
window answers. For more detailed information and help text, the reader is referred to the “(L)WDF 
Toolbox Reference Guide” and the several reports and test cases listed on and available from 
http://ens.ewi.tudelft.nl/~huib/mtbx/
 
 
Installation and requirements. 
 
Installation is very simple: just unzip the Toolbox’s zip-file to a directory of your choice. Either set 
MATLAB’s  Current Directory to this directory or add it to MATLAB’s search path, with e.g. 
 
>> addpath(‘Your_Directory’); 
 
Only basic MATLAB functionality is needed: there are no dependencies on other MATLAB Toolboxes. 

2  (L)WDF Design Toolbox for MATLAB  User’s Guide 

http://ens.ewi.tudelft.nl/~huib/mtbx/


Designing in the Continuous-time Domain. 
 
We will describe a continuous-time filter with a transfer function, , which is the quotient of two 

polynomials in the complex frequency variable s, viz. 

)(sH

)(
)()(

sg
sfsH = .  

The magnitude of the transfer function is given by )( ωjH , i.e. the modulus of the complex function, 

and the phase angle arg )( ωj .    

 
Usually we start by approximating a normalized low-pass design with a function, the magnitude of 
which approximates the ideal low-pass characteristic as good as possible, viz. showing 
• a pass-band for which the input frequencies are passed (nearly) unaltered, 
• a stop-band for which input frequencies are attenuated as much as possible, 
• and in between a transition-band as narrow as possible. 
 
For a normalized low-pass filter the cut-off frequency that indicates the edge of the pass-band is 
located at a radian frequency equal to 1. In the literature, the normalized angular frequency is 
commonly denoted with the symbol Ω. 
 
 
 
 
 
 
 
 
 
 

Ω 

1.0 

1.0 

transfer gain 

pass-band stop-band 

0 

cut-off frequency 

Figure 1.  The ideal low-pass magnitude 
                   transfer function. 

 
Comparing Butterworth Transfer Functions. 
 
In Figure 2 a number of transfer functions that use the Butterworth approximation method have been 
plotted. The approximations differ from each other in the order of the transfer function. 
The commands, partly basic MATLAB functions, partly functions from this toolbox, to construct this 
picture, are: 
 
  Hs = struct([]); 
  for i = 1:5 
      Hs = [Hs; nlpf('butter',i)]; 
  end 
  plotHs(Hs,2,1,[0.01 1000],1,1000, ... 
      'Butterworth Characteristics', ... 
          [ 'N = 1'; 'N = 2'; 'N = 3'; 'N = 4'; 'N = 5'] ); 
  figure(1) 
  axis([ xlim -80 10]) 
  xlabel('Normalized Frequency'); 
  figure(2) 
  axis([ xlim -460 10]) 
  xlabel('Normalized Frequency'); 
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To be more exact, the magnitude and phase transfer functions for the 1st order upto and including the 
5th order Butterworth low-pass filters, are calculated and shown. 
 
Figure 2 clearly shows that increasing the filter order results in an increasingly better approximation 
of the ideal, rectangular low-pass transfer function, at the expense of larger phase-differences between 
in- and output signals. 
 
See the Reference Guide for a detailed explanation of the syntax to be used for the Toolboxes’ 
functions.
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Figure 2.   Magnitude and phase transfer functions 
                    for Butterworth low-pass filters. 

4  (L)WDF Design Toolbox for MATLAB  User’s Guide 



All 5 transfer functions are combined in one structure array, Hs:  
 
Hs is 5x1 struct array with fields: 
    poly_fs 
    poly_gs 
    ident 
    roots_fs 
    roots_gs 
 

from which we can access all individual transfer functions, e.g. the one for N= 5: 
 
>> Hs(5) 
ans =  
     poly_fs: 1 
     poly_gs: [1.0000    3.2361    5.2361    5.2361    3.2361    1.0000] 
       ident: 'LP PROTOTYPE: 'butter',5,1' 
    roots_fs: [] 
    roots_gs: [ -1.0000           
                -0.8090 - 0.5878i 
                -0.8090 + 0.5878i 
                -0.3090 - 0.9511i 
                -0.3090 + 0.9511i ] 
 

)(sf  and for this are directly available in MATLAB’s polynomial notation, as )(sg )(sH
  0.1)( =sf

  0000.12361.32361.52361.52361.3)( 2345 +++++= ssssssg

 
)(sf  thus has no roots, while the relationship between and roots_gs is given by: )(sg

  { }∏
=

−=
N

i

ssg
1

)( )roots_gs(i

According to the theory, this 5th order polynomial results in one real root, and two pairs of complex 
conjugated roots. 
 
Recapitulating: 

 
0000.12361.32361.52361.52361.3

0.1)(
2345 +++++

=
sssss

sH  
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Comparing different filter approximation methods. 
 
With the following instructions a Butterworth, a Chebyshev, an Inverse Chebyshev and a Cauer 
approximation – all of them of order 3 – are drawn in one plot. 
 
  N = 3; 
  Hs_btw = nlpf('butter',N); 
  Hs_che = nlpf('cheby',N,1,1); 
  Hs_ich = nlpf('invcheby',N,40,1); 
  Hs_cau = nlpf('cauer',N,1,40,'a',1); 
  plotHs([Hs_btw;Hs_che;Hs_ich;Hs_cau],2,1,[0.1 100],0,1000, ... 
  'Transfer Characteristics', ... 
  [ ' butterworth '; ' chebyshev   '; ' inverse cheb'; ' cauer       ' ] ); 
  axis([ xlim -60 10]) 
  xlabel('Normalized Frequency'); 
 

For a better comparison of the filter shapes, the normalization of the cut-off frequencies is chosen such 
that all magnitude transfer function show a 3dB attenuation at Normalized Frequency = 1.  
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Figure 3.   Magnitude  transfer functions 
for 3  order Butterworth, Chebyshev,  
Inverse Chebyshev and Cauer low-pass 
filters.
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Figure 4.   Impulse response in the time 
domain for the filters of Figure 3.
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From Figure 3, the phase plot is omitted. To obtain a phase plot, follow the previous example: it 
should show that the phase characteristics are less smooth then the Butterworth’ one.     
 
In Figure 4, the impulse responses of the same four filters are shown, obtained using MATLAB’s 
impulse.m function (from the Control Toolbox). It can be seen that these filters belong to the class of 
Infinite Impulse Response (IIR) filters. 
 
 
The parameters for the Cauer filter are now: 
 
>> Hs_cau 
Hs_cau =  
     poly_fs: [0.0638 0 0.4121] 
     poly_gs: [1 0.9015 1.0560 0.4121] 
       ident: 'LP PROTOTYPE: 'cauer',3,1,40,'A',1,1' 
    roots_fs: [2x1 double] 
    roots_gs: [3x1 double] 
>> Hs_cau.roots_fs 
ans = 
        0 - 2.5420i 
        0 + 2.5420i 
>> Hs_cau.roots_gs 
ans = 
  -0.4826           
  -0.2094 - 0.9000i 
  -0.2094 + 0.9000i 
>>  

from which can be read that       
4121.00560.19015.0

4121.00638.0
)(

23

2

+++

+
=

sss
s

sH  

 
The locations of the roots of  in the complex plane are shown in Figure 5 and can be seen to be 
connectible with an elliptical function. 

)(sg
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Figure 5.   Location of the poles of the 3  order rd

                    Cauer filter from this example. 
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From filter theory it is known that odd order Cauer approximations are usually realizable as lumped 
element ladder circuits (see also later on). This is not so for even order transfer functions, which end 
up with negative component values and thus are not realizable as ladder structures. The cause is that 
for even order approximations, both at zero as at infinite frequencies, the transfer gain should have a 
distinct value instead of 1 or zero. Skwirzynski [Skw65] described a solution for this problem, viz. to 
either only shift the highest notch in the stop-band to infinity (Type ‘B’), or to also shift the first peak 
in the pass-band to zero frequency (Type ‘C’). Both Type B and C transfer functions result in 
realizable ladder structures. 
The unaltered function will be denoted as Type ‘A’. 
 
The following functions are plotted in Figure 6: 
 
  nlpf('cauer',4,1,45,'A',1) 
  nlpf('cauer',4,1,45,'B',1) 
  nlpf('cauer',4,1,45,'C',1) 
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Figure 6.   4th Cauer filters, types A, B and C with 
                    zoomed-in pass-band. 

 
 
 
 

Cauer Filter Parameter Conversion. 
 
If you are more accustomed with specifying Cauer filters in terms of reflection coefficient ρ and 
modular angle θ , then function cc2pars.m can help with translating ρ and θ into the parameters used 
by the Toolbox. 
A filter, identified in a catalog classification as e.g. ‘C06 B 25 48’ can be translated with 
>> [N,rp,rs,ftype,Wn,normtd] = cc2pars(6,25,48,'b'); 

and then computed with e.g.  
>> [Hs,wp] = Hs_cauer(N,rp,rs,ftype,Wn,normtd); 

or translated into a ladder structure using about the same parameters (see later on).  
Functions ripple2rho and rho2ripple are simple conversion routines with self-explanatory names.
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Frequency Transformations. 
 

With the toolbox the following well-known frequency transformations are possible: 
 
nlp2lp:  converts a normalized low-pass to low-pass with an arbitrary cut-off frequency, 
nlp2hp: creates a high-pass transfer function,  
nlp2bp: obtains a band-pass filter, and 
nlp2bs: transforms the normalized low-pass into a band-stop filter. 
 
 

Below follows an example of the nlp2bp function, given our previously calculated 3rd order, type ‘A’, 
Cauer filter:  
 
  Hs_cau_bp = nlp2bp(Hs_cau,1,1); 
  Hs_cau_b1 = nlp2bp(Hs_cau,1,2); 
  Hs_cau_b2 = nlp2bp(Hs_cau,10,10); 
  plotHs([Hs_cau_bp;Hs_cau_b1;Hs_cau_b2],2,1,[],0,1000, ... 
  '3rd order Cauer lp-bp Transformations', ... 
  [ ' fc =   1, BW =  1'; ' fc =   1, BW =  2'; ' fc = 10, BW = 10 ' ] ); 
  axis([ xlim -60 20]) 
  xlabel('Normalized Frequency'); 
 

10-2 10-1 100 101 102
-60

-50

-40

-30

-20

-10

0

10

20

M
ag

ni
tu

de
 in

 d
B

Continuous-time 3rd order Cauer lp-bp Transformations

Normalized Frequency

 fc =   1, BW =  1
 fc =   1, BW =  2
 fc = 10, BW = 10

 
 
 
 
 
 
 
 
 

Figure 7.   Three 6th  order Cauer filters, each 
obtained with a normalized low-pass to band-
pass transformation. 

 
 
 
 
 
 
 
Notice that the transformation causes the band-pass filter to be arithmetically symmetric around the 
center-frequency in Figure 7 (thus geometrically symmetric if plotted with a logarithmic frequency 
scale). 
 
 
To obtain the transfer function of a low-pass filter with a -3dB cut-off frequency at 15 kHz, e.g. 
>> Hs_cau_15k = nlp2lp(Hs_cau,2*pi*15000); 
 

Note that if one is only interested in low-pass filter designs, it is also possible to use the functions 
Hs_butter, Hs_cheby, Hs_invcheby, Hs_cauer and/or Hs_Vlach which allow a parameter 
cutOffFrequency to be passed directly, instead of the combination nlpf and nlp2lp. 
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Ladder Circuits. 
 

RS

C1

L2

C2
C3 RL

RS

C1

L2

C2
C3 RL

RS

C1

L2

C2
C3 RL

RS

C1

L2

C2
C3 RL

The normalized 3rd order Cauer filter from a previous example can be realized as a ladder circuit:  
 

RS

C1

L2

C2
C3 RL

>> nlpLadder = nlp_ladder('cauer',3,1,40,'a',1); 
 
 
   Rs    1.00000 Ohm 
   C01   2.07190 F   in shunt arm 
   L02   0.98116 H, parallel with 

    C02   0.15773 F   in series arm 
   C03   2.07190 F   in shunt arm 
   RL    1.00000 Ohm 

 
or, if its dual realization form is wanted, start
 
>> nlpLadder_d = nlp_ladder('cauer',3,1
 
 
   Rs    1.00000 Ohm 
   L01   2.07190 H   in series arm 
   L02   0.15773 H, in series with 
   C02   0.98116 F   in shunt arm 
   L03   2.07190 H   in series arm 
   RL    1.00000 Ohm 

 

Fig 
 
 
It was indicated above that even order Cauer f
with positive element values.  Below we show 
transfer function. The ladder structure is the 
Because of the fact that for a Type B function 
source and load resistances cannot be equal. I
 
4th order Cauer low-pass, type B:  different sou
 
   Rs    1.00000 Ohm 
   C01   1.84916 F   in shunt arm 
   L02   0.86103 H, parallel with 
   C02   0.41910 F   in series arm 
   C03   2.65202 F   in shunt arm 
   L04   0.83131 H   in series arm 
   RL    0.37598 Ohm 

 
same specifications as above, but now a type C
equal source and load resistances, both 1.0 Ω
 
   Rs    1.00000 Ohm 
   C01   1.40699 F   in shunt arm 
   L02   1.29079 H, parallel with 
   C02   0.24945 F   in series arm 
   C03   1.50477 F   in shunt arm 
   L04   1.62097 H   in series arm 
   RL    1.00000 Ohm 

10 
a)
RS L1

L2

L3

RL

ing with an inductor in a series arm (use ‘z’):  

,40,'a',1,'z'); 

) 
b
C2

ure 8a and  b.    Two functionally equivalent ladder circuits.  

ilters of type ‘A’ are not realizable as ladder structures 
4th order designs, realizing a Type B and a Type C 
same for both Types, only the component values differ. 
the transfer gain at zero frequency differs from 1, the 
f this should be a problem, then a Type C will be needed. 

rce and load resistance values are needed. 

 version:   

RS

C1

L2

C2
C3

L4

RL

Figure 9.   Ladder circuit for both 4th order  
types B and C Cauer low-pass filters. 
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The same transformation methods that we mentioned before are also applicable on ladder structures, 
called resp. nladder2lp, nladder2hp, nladder2bp and nladder2bs here. 
 
 
With nladder2bp, the ladder of Figure 8a will be transformed into a structure that realizes the 
transfer function of  Hs_cau_bp (shown in blue in Figure 7).  
 

RS

L1 C1

L2

C2

L3

C3
L4 C4 RL

>> bpLadder  = nladder2bp(nlpLadder,1,1); 
>> showLadder(bpLadder,3,'after 3rd order Cauer lpladder-bpladder Transformation'); 

 
 
 
 
 
 
 
 

 
   Rs    1.00000 Ohm 

Figure 10.   6th  order Cauer band-pass ladder circuit, 
resulting from a transformation of the ladder in Figure 8a. 
 

   L01   0.48265 H, parallel with 
   C01   2.07190 F   in shunt arm 
   L02   0.67867 H, parallel with 
   C02   0.17663 F   in series arm 
   L03   5.66148 H, parallel with 
   C03   1.47347 F   in series arm 
   L04   0.48265 H, parallel with 
   C04   2.07190 F   in shunt arm 
   RL    1.00000 Ohm 

 
 
 
Another example:   
a high-pass filter with a cut-off frequency of 8 kHz, with source and load resistance values of 2700 Ω . 
 
This is a two-step process (transform, then scale), for we first have to execute the transformation: 
 
>> nlpLadder = nlp_ladder('cauer',3,1,40,'a',1,'z'); 

RS C1

L2

C3

RL

>> hpLadder  = nladder2hp(nlpLadder,2*pi*8000);   % 2*pi for realistic frequencies! 

 
 
 
 
   Rs    1.00000 Ohm 
   C01   0.00001 F   in series arm 
   L02   0.00002 H, in series with 
   C02   0.00013 F   in shunt arm 
   C03   0.00001 F   in series arm 
   RL    1.00000 Ohm 
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Notice that every time a ladder structure is computed, its magnitude transfer function will be reconstructed from
the ladder’s topology and will be compared with the original one. 

 

e   11



 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
In the Toolbox as is, there is no special func
lumped element filters is not really the goal 
However, since the structure of the ladder is
 
hpLadder =  
    elements: 'rcScR' 
      values: [6x1 double] 

 
the following code will do the job (also applic
elements allowed): 
 
 function scVals = impScale(Ladd
   scVals   = Ladder.values; 
   elements = strrep(lower(Ladde
   elements = strrep(elements,'p
   isC = (elements == 'c'); 
   scVals( isC) = scVals( isC)/R
   scVals(~isC) = scVals(~isC)*R
 

For hpLadder just calculated, and the given 

Rs 2k7 Ω  

C01 3.6 nF 

L02 54.7 mH 

C02 46.7 nF 

C03 3.6 nF 

RL 2k7 Ω  

Figure 11a and b.  High-pass ladder 
circuit and its Magnitude Transfer function 
for the component values in Table 1. 

10
Transfer function reconstructed from ladder topology

) 

 

 

 
 
Note:  
Several books, like [Zve67] and [Chr66], con
structures with. When comparing those valu
use the same frequency normalization meth

12 
b

tion to do impedance scaling, since the design of real 
of this toolbox.  
 given (see the Reference Guide for a detailed description),  

able to band-pass and band-stop structures, but no unit 

er,R) 

r.elements),'s','lc'); 
','lc'); 

; 
; 

R = 2700 Ω , we can find: 
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tain numbers of tables to calculate the values of ladder 
es with the ones calculated with the Toolbox, be sure to 
od with the Toolbox as has been done by the author(s). 
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Some 3rd order Vlach Low-pass Transfer Functions. 
 

In [Vla69], J. Vlach described an approximation method that we have implemented as the ‘Vlach-
method’. The basic idea had been published by Sharpe [Sha54], but was extended, made more 
accurate, and was also applied to band-pass approximations by Vlach.  
Next to that, this method has the advantages that 
• notches can be inserted in the stop-band (stop-bands for bandpass filters), and that 
• unit elements that contribute to the filter approximation can be inserted. 
 

When no notches are applied, a Vlach low-pass equals a Chebyshev approximation. This will be shown 
in the next example for a 3rd order filter. Also, we will investigate what will be the result when we 
position the notch at the exact frequency as where a 3rd order Cauer approximation (same pass-band 
ripple and same frequency normalization method)  would have located its notch.  
 
 
% First find the frequency of the notch in the stop-band for a 3rd order Cauer filter. 
% But the relation ws=1/wp holds true for the 'symmetric' Cauer transfer functions. 
[Hsx,wp] = Hs_cauer(3,1,40,'a',1,-1); 
wp2 = wp(2);   % skip wp at w=0 
ws2 = 1/wp(2); 
% Again the Cauer filter, but now with its cut-of frequency at the -3dB point. 
[Hs_cau,wp] = Hs_cauer(N,1,40,'a',1,1); 
ws = wp(2)/wp2 * ws2; % This will be the notch frequency for our cut-off   
    % frequency reference method (-3 dB) 
 
% Four Vlach transfer functions: 
Hs_vla_a = Hs_Vlach(3,1,1,[],0,1); % no notch 
Hs_vla_b = Hs_Vlach(3,1,1, 3 , 0,1); % notch at w = 3 
Hs_vla_c = Hs_Vlach(3,1,1, ws , 0,1); % notch at Cauer’s ws  
Hs_vla_d = Hs_Vlach(3,1,1, 2 , 0,1); % notch at w = 2 
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Figure 12.   Four 3rd order Vlach  filters. 

 
 
 
 
 
 
MATLAB shows that 
 
>> ws 
ws = 
   2.54202809474093 
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Alternatively, we could have realized that the roots of , at which frequency or frequencies the 
transfer function  becomes zero, immediately could have given us the value of ws. 

)(sf
)(sH

Indeed, we can find that 
 
>> Hs_cau.roots_fs 
ans = 
                 0 - 2.54202809474093i 
                 0 + 2.54202809474093i 
  
from which we see that the roots are purely imaginary and equal to wsj± . 
 
To be exact: in fact ws equals  

>> fs = conv( [1 -Hs_cau.roots_fs(1)], [1 -Hs_cau.roots_fs(2)] ); 
>> ws = sqrt( fs(end) ); 

 
 
 
Now compare Hs_che with Hs_vla_a.  
The poly_fs’s and poly_gs’s are −apart from accuracy matters in the computation− almost exactly 
equal, i.e. a Vlach approximation without additional notches equals the Chebyshev approximation. 
 
Hs_che =  
     poly_fs: 0.37434096543120 
     poly_gs: [1 0.90270351281101 1.03309585058947 0.37434096543120] 
       ident: 'LP PROTOTYPE: 'cheby',3,1,1,1' 
Hs_vla_a =  
     poly_fs: 0.37434096541660 
     poly_gs: [1 0.90270351279928 1.03309585056261 0.37434096541660] 
       ident: 'LP PROTOTYPE: 'vlach',3,1,1,[],1,0' 
 

 
Also, there is a very large similarity between Hs_cau and Hs_vla_c (the ‘simulated’ Cauer version). 
This means that if the notch is positioned at the same frequency where the Cauer approximation 
would have located it, then the Vlach and Cauer transfer functions will be identical. 
 
Hs_cau =  
     poly_fs: [0.06377455880975 0 0.41210525743689] 
     poly_gs: [1 0.90152483145585 1.05600921457728 0.41210525743689] 
       ident: 'LP PROTOTYPE: 'cauer',3,1,40,'A',1,1' 
Hs_vla_c =  
     poly_fs: [0.06377455885052 0 0.41210525770037] 
     poly_gs: [1 0.90152483163557 1.05600921500788 0.41210525770037] 
       ident: 'LP PROTOTYPE: 'vlach',3,1,1,[2.542],1,0' 
 

 
Note:  Given a filter order N, the maximum number of notches that can be inserted is floor(N/2). 
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Vlach Band-pass Transfer Functions. 
 

The Vlach approximation is perfectly suitable for designing band-pass filters directly (without a 
transformation), since the cut-off frequencies of the pass-band can be chosen separately and without 
affecting each other, while the position of notches (if any) in the stop-bands can be tuned to be exactly 
at the frequencies of disturbing signals.  
 
Also, more or less geometrically symmetric filters are obtainable, as in shown in the next example: 
 
>> Hs = Hs_bpVlach(10,0.1,[1.5 2.5], [0 1.0 3.0],0,1);  
>> plotHs(Hs,1) 
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 Figure 13.   Vlach 10  order band-pass design with one notch th

                       in the lower and one notch in the upper pass-band.  
 
As can be seen from Figure 13, the transfer function between the notches is (almost) symmetrical 

around 2.0, i.e. 
2

__ upperclowerc ff +
 (the geometrical mean). 

 
We will reveal more about the capabilities of the Vlach functions when treating microwave filter 
designs. 

 
 
Note:  
For a band-pass filter to be realizable there should be at least one notch at frequency 0.  
Given a filter order N, the maximum number of notches (notches at zero are treated differently 
because of the theoretical symmetry with the negative frequency part of the spectrum) is given by 

(number of notches in 0) + 2*(number of notches not in 0) <= N.
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Designing in the Discrete-time Domain. 
 
We assume that the reader is familiar with the theory on the z-transform and knows about the 
methods to translate a continuous-time function into a discrete-time function.  
 
In this Toolbox, we will only use the bilinear transformation, mainly because of the fact that the 
theory of Wave Digital Filters is also based on this method. 
  

The transformation uses the substitution    
1
12

+
−

⋅=
z
z

T
s  

 
In here, we will always set , the result of which is that the continuous-time Normalized 
Frequency value 1 always transforms into the discrete-time value 0.25 (i.e. a frequency value equal to 
¼ of the Sample-frequency) and vice versa. The complete relationship between the continuous-time 
frequency scale (from 0 to 

2=T

∞ ) and the discrete-time relative frequency scale (0 to 0.5) is given by an 

-function, as shown in Figure 14. 1tan −

The discrete-time transfer function is denoted as . )(zH
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Figure 14.   Domain conversion based on 
the bi-linear transformation, which is 
commonly indicated as ‘warping’. 

 
 
 
 
 
 
 
 
 
The functions fs2fz, fz2fs, Hs2Hz, Hz2Hs and plotHz are specially meant for the design of discrete 
filters and for switching between the domains. 
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The actual design of a discrete-time filter is a two step process, i.e. the design of a continuous-time 
filter followed by the bilinear transformation.  
Since the relation between frequencies in the two domains is exactly known, it is possible to pass ‘pre-
warped’ discrete-time frequencies to the continuous-time design, that, after transformation will result 
in the correct discrete-time frequencies. 
 
 
          >> Hs = Hs_Vlach(7,0.01, fz2fs(0.1), fz2fs([0.15 0.2 0.35]), 0,0); 
          >> Hz = Hs2Hz(Hs); 
          >> plotHz( Hz,1 ); 
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Figure 15.   A discrete-time domain Vlach low-pass filter with its cut-off frequency 
                       and three notches specified in the discrete-time domain.  

 
 
 
The complete transfer function H(z) of this example then turns out to be 
 

( )
7-6-5-4-3-2-1-

-7-6-5-4-3-2-12

z0.2119z1.6363z5.6162z11.1224z13.7583z10.6717z4.83521.0
z0.1212z0.0463z0.1212z0.1498z0.1498z0.1212z0.04630.121210)(

−+−+−+−
+++++++⋅

=
−

zH  

 
 
 

(L)WDF Design Toolbox for MATLAB   User’s Guide   17



Just for fun:  Comparing a Cauer with a FIR Filter. 
 
It is interesting to compare toolbox designs with the familiar FIR filters. 
Shown here is a 7th order Cauer filter (with a pass-band ripple of 0.1 dB, a stop-band ripple of 50 dB, 
freqNormMode set to 0) next to  a 128 taps FIR filter that has been designed using the Remez 
algorithm from the Signal Processing Toolbox (the original function remez.m has been renamed to 
firpm.m).   
 
In MATLAB’s notation: 
 
>> n = 127; 
>> f = [ 0 0.3 0.34102 1 ]; 
>> m = [ 1 1 0 0 ]; 
>> b = firpm( n, f, m );   % Parks-McClellan optimal equiripple FIR filter design. 
 
In here, vector f is adjusted such that the stop-band ripple of the FIR filter also shows peaks at 
maximally −50 dB. 
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Figure 16.   Comparing the Magnitude Transfer functions of a FIR filter 
                      and a 7th order discrete-time Cauer filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the FIR filter needs 128 multiplications (or 64, depending on the implementation method) 
while if the Cauer filter is implemented as a (Lattice) Wave Digital Filter, it only needs 7 or 8 
multiplications. 
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Designing Wave Digital Filters  (WDFs). 
 
A Wave Digital Filter is essentially a translation of a ladder structure into the discrete-time domain. 
See [Fet86] and all other literature on WDFs to learn about all the benefits of this kind of filters. 
Unfortunately, there exists very little software to design WDFs. With this Toolbox it is possible to 
translate all the ladder structures that can be designed with the Toolbox’s functions into WDFs. 
 
For the translation, the circuits have to be described using the so-called wave variables, A and B, 
instead of the common voltages and currents. This way of describing circuits has originally been 
developed for microwave and high-frequency circuitry. 
According to the theory, components like inductances and capacitors translate into Delay Elements, 
while the ‘wiring’ needed to connect these components translates into ‘adaptors’. These adaptors 
contain computational elements to perform additions, sign-inversions (or subtractions) and one or two 
multiplications with constant coefficients. The ladder circuit determines the structure of the WDF, 
while the values of the lumped elements in the ladder determine the multiplication coefficients. 
 
An overview of the adaptors supported by this Toolbox are given in Figures 18 and 19, with an 
additional explanation of the (commonly used in Signal Processing) symbols in Figure 17. 
 
 
 
 

++

++ T-

x1 [ ]n

x1 [ ]n

y n [ ]

y n [ ]

x [ ]n

x [ ]n

x [ ]n

y n [ ]

y n [ ]   = − 1x [ ]n

y n [ ]    = − − 1x [ ]n

x2 [ ]n

x2 [ ]n

k

add:  y n n n [ ] [ ] [ ]= +   x x1 2 

subtract:  y n n n [ ] [ ] [ ]= −   x x1 2 

ALU functions

(constant) multiplier:    k  = ∗y n n  [ ] [ ]x

one clock cycle delay

-T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.   Explanation of the basic elements.   
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Figure 18c.    Symbol and Block scheme for a ‘matched 3 port serial adaptor’ 

Figure 18b.    Symbol and Block scheme for a ‘3 port parallel adaptor’ 

Figure 18a.    Symbol and Block scheme for a ‘matched 3 port parallel adaptor’ 

 
 
 
 
 
 
 
 
 
 
 

Figure 18d.    Symbol and Block scheme for a ‘3 port serial adaptor’ 
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 Figure 19.   Symbol a), and two functionally equivalent realization schemes b) and c) for a 

                      ‘2 port adaptor’  
 
 
 
Given a structure xLadder that has been determined before, the syntax to obtain a WDF is simply 

>>  WDF = ladder2WDF(xLadder) 
 
Here WDF will also be a structure, containing the fields 

 WDF.wdaStruct 
  WDF.wdaNo 
  WDF.mulFacs  

    
WDF.wdaStruct describes the WDF block diagram, where the block diagram is represented with 2 
strings, one describing the adaptors in the signal path (bottom row), the second one (top row) 
describing the elements or adaptors connected to the serial or parallel ports of the first mentioned 
adaptors. 
So, the bottom row can only consist of the following codes  
 's' -  for a reflection free 3-port serial adaptor, 
 'p' -  a reflection free 3-port parallel adaptor, 
 'S'  -  a 3-port serial adaptor with two coefficients, 
 'P'  -  a 3-port parallel adaptor with two coefficients, 
 'm'  -  an output inverter or scaling factor, if needed. 
Some rules have been formulated for connecting the adaptors to each other: 
For all these adaptors, port 1 is the input, port 3 the (reflection free) output, and port 2 the interface 
to the top row elements. 
Each element in the top row string is connected to port 2 of the adaptor in the same position in the 
bottom row string. Possible codes are: 
 '+'  -  a single delay element (translation of a capacitance), 
 '-'  -  a delay element in series with an inverter (inductance), 
 's' -  a reflection free serial adaptor (series LC resonator),  
 'p' -  a reflection free parallel adaptor (parallel LC resonator), 
 'x' -  for an empty slot. 
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With the 's' and 'p' adaptors, port 1 is connected to a single delay element (translation of the 
capacitance), port 2 to a delay element in series with an inverter (the inductance), while the reflection 
free port 3 is connected to port 2 of the corresponding bottom row adaptor.   
 
WDF.wdaNo defines the numbering of the individual adaptors, 
 

WDF.mulFacs lists the multiplication coefficients of the adaptors, starting from adaptor one. The very 
last adaptor in a asymmetric or the middle adaptor in a symmetric structure, which is not reflection 
free, needs two coefficients, while, if the bottom row string ends with an 'm', the last value will be the 
scaling coefficient.    
 
 
 

RS L1

C2

L3

RL

The next commands create a WDF from a 3rd order Butterworth low-pass: 
 
>> nlpLadder = nlp_ladder('butter',3,'z'); 
 
   Rs    1.00000 Ohm 

    L01   1.00000 H   in series arm 
   C02   2.00000 F   in shunt arm 
   L03   1.00000 H   in series arm 
   RL    1.00000 Ohm 
 
>> lpLadder = nladder2lp(nlpLadder,fz2fs(0.15)); 
>> WDF = ladder2WDF(lpLadder) 
wdfType not specified : '3p' assumed ... 
 
Adaptor 1:  3p serial,   p3 matched :  alpha1 =  0.
Adaptor 2:  3p parallel, p3 matched :  alpha1 =  0.
Adaptor 3:  3p serial               :  alpha1 =  0.
                                       alpha3 =  0.
 
Adaptor   port1        port2       port3 
----------------------------------------- 
   1      A1/B1       -T_L01     3pA(2).p1 
   2    3pA(1).p3      T_C02     3pA(3).p1 

-T

1

2

A1.α1

Ain

Brev

   3    3pA(2).p3     -T_L03       A3/B3 
 
 
WDF =  
    wdaStruct: [2x3 char] 
        wdaNo: [2x3 double] 
      mulFacs: [4x1 double] 
 

 
 
 
 

Figure 20a and b.    3rd order Butterwo
                                     and as a Wave Dig
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WDFs actually show two outputs, denoted here as Bfwd and Brev. (see Figure 21a). 

Bfwd is the ‘wanted’ or ‘forward’ output (in terms of scattering matrix notation also known as ), 

while B

21S

rev is the ‘reflected’ or ‘reverse’ output ( ), which shows a complementary characteristic 

w.r.t. B

11S

fwd,   viz.  1
22

=+
in

rev

in

fwd

A
B

A
B

   or   1)()( 22
=+ ωω jBjB revfwd . 

 
If the filter is specified to be a low-pass, then the reflected output will show a high-pass behavior. 
In many designs, however, this reflected output is hardly usable, showing particularly bad stop-band 
behavior. Butterworth and bireciprocal Cauer designs (see later) can make good use of this feature. 
 
Just like the passive ladder circuits can show resonance behavior with the result that on some of the 
nodes voltages or currents can be larger than the input values, WDFs can internally also be more  
sensitive for certain frequencies than initially expected. These effects should be taken into account 
when implementing the filter in hardware with e.g. fixed-point arithmetic support. 
This phenomenon has been made visible if Figure 21b) where the complete frequency responses for all 
B-outputs of the 3rd order Butterworth WDF of Figure 20b have been plotted (Note: see the Reference 
Guide which syntax for ladder2WDF to use for obtaining the impulse reponses for all B-outputs).  
In the plots that are returned by ladder2WDF (or showWDF) the maximum levels of these responses 
will be shown in the lower subplot (again Figure 21a). 
When such large signal values can really 
occur within a particular environment,  
the WDF’s internal buswidth should be  
adapted to prevent overflow errors.  
Be warned that the other nodes inside the  
adaptors are not monitored here. 
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Figure 21a and b.    Output information for 
the WDF of Figure 20b. 
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For symmetric ladder circuits, like that in Figure 20a, it is also possible to translate them into 
symmetric WDF structures. If also the component values are mirrored, this will result in mirrored 
coefficients too, which can benefit the accuracy of the structure. 
 
The preference for a specific structure can be made available to the ladder2WDF function: 
>> ladder2WDF(lpLadder,'3p_sym'); 
 
Adaptor 1:  3p serial,   p3 matched :  alpha1 =  0.33754 
Adaptor 2:  3p parallel             :  alpha1 =  0.14675 
                                       alpha3 =  0.14675 
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Adaptor 3:  3p serial,   p3 matched :  alpha1 =  0.33754 

 
 
 
 
 
 
 
 
 
 
 

Figure 22.    Symmetrical version of the WDF of Figure 20b.  
 
 
 
 
The next structure is s translation of the band-pass ladder of Figure 10, again using 3-port adaptors. 
>> ladder2WDF(bpLadder,'3p'); 
 
The parallel L-C resonators result in additional adaptors in the top row with two delay elements, one 
for the L and one for the C connected to port 2 and port 1 respectively. 
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Figure 23.    WDF version of the band-pass ladder of Figure 10.
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Instead of using 3-port adaptors for implementing resonators, serial or parallel, it is also possible to 
use translations with 2-port adaptors. This is shown in Figure 24 that will result in exactly the same 
transfer functions as the structure from Figure 23, although with different intermediate maximum 
signal levels. 
 

The use of 2-port adaptors can be forced with:  
>> ladder2WDF(bpLadder,'2p'); 
 

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Adapter Number ( resp. B1,B2[,B3] )M
ax

im
um

 S
ig

na
l L

ev
el

 in
 F

re
qu

en
cy

 ra
ng

e

T

-T

2

1

A1.α1

1

2

3

A2.α1

T

-T

2

1

A3.α1

1

2

3

A4.α1

T

-T

2

1

A5.α1

1

2

3

A6.α1

T

-T

2

1

A7.α1

1

2

3

A8.α1
A8.α3

A3 = 0

BfwdAin

−1

Brev

a) 

b) 

 
 
 
 

Figure 24.    WDF version of the band-pass ladder of Figure 10 with 2-port 
                       adaptors in the top row a), and b) the maximum transfer gains at 
                       each B-output of every adaptor.  
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Lattice Wave Digital Filters  (LWDFs). 
 
Lattice WDFs are constructed with two parallel operating all-pass functions (made up with 2-ports), 
i.e. transfer functions showing a gain factor of 1 for all frequencies but differing in their phase 
responses. By adding the two outputs we get an overall magnitude transfer function with maximum 
output levels of 2 at those frequencies where the output signals are in phase, and notches when the 
signals are exactly in anti-phase. Subtracting the signals has the complementary effect. 
Now the trick is to create phase functions such that the overall magnitude transfer functions shows 
the desired characteristic. 
It can be shown [Gazsi85] that odd order LWDFs can be used to create all odd order low-pass  and 
high-pass transfer functions that have been describes before, while even order LWDFs result in band-
pass and band-stop functions. 
 
In the following example, we will design a high-pass LWDF: 
 
>> [Hs,wp] = Hs_Vlach(5,0.1, fz2fs(0.2), fz2fs([0.29 0.35]), 0, 1); 
>> Hshp = nlp2hp(Hs,1); 
>> LWDF = Hs2LWDF(Hshp); 

Input

T
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T
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T

γ4

T

γ5

1/2

1/2

−1

+

+

Outputs

highpass

lowpass

LWDF: ODD filter order, so LOW/HIGH pass filter assumed 
 
Structure appears to be a lowpass/highpass filter. 
Top row all-pass sections : 
  1st degree section       :  y01 = -0.43626 
  2nd degree section       :  y02 = -0.78933 
                              y03 = -0.33269 
Bottom row all-pass sections : 
  2nd degree section       :  y04 = -0.40012 
                              y05 = -0.53078 
 
>> Hz2 = LWDF2Hz(LWDF); 
>> plotHz(Hz2,1); 

 
 

a)  
 
 

b)  
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Figure 25a and b.    Lattice Wave Digital 
high-pass filter, structure and transfer 
characteristics. 

 
 
 
 
 
 
 
 



Notice that the specific frequency points were specified in the discrete-time domain directly (viz. at 
0.2, 0.29 and 0.35 of the Sample Frequency), and that these point are mirrored by the low-pass to 
high-pass transformation to respectively  3.02.05.0 =− , 21.029.05.0 =− and of the 
Sample Frequency. 

15.035.05.0 =−

Also, the peaks in the pass-band of the normalized low-pass function are returned in the variable wp 
by Hs_Vlach, so the peaks in the pass-band of the high-pass characteristic can be calculated (zoom in 
the real MATLAB plot to see it): 
>> 0.5 - fs2fz(wp) 
ans = 
   0.5000 
   0.3774 
   0.3217 

Since low-pass and high-pass outputs are complementary functions, these are exactly the relative 
frequencies where the low-pass characteristic shows its notches. 
 
In Figure 26, the phase characteristics of the individual all-pass sections (top and bottom) are shown, 
together with the resulting absolute phase difference. All characteristic points mentioned above are 
clearly recognizable. Also very obvious is the relative weakness of this type of structures, viz. the very 
small phase differences in the stop-band. In case the coefficients are not realized accurately enough, 
e.g. due to quantizing effects, the stop-band cannot be guaranteed to be exactly as calculated. 
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Figure 26.   Phase characteristics describing the LWDF of Figure 25. 
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As said before, even order LWDFs are used to realize band-pass (band-stop) transfer functions: 
 
>> Hs = nlpf('invcheby',5,45,1); 
>> Hsbp = nlp2bp(Hs,fz2fs(0.15),fz2fs(0.1)); 
>> LWDF = Hs2LWDF(Hsbp); Hz2 = LWDF2Hz(LWDF); plotHz(Hz2,1,2);  
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Figure 27a and b.    Lattice Wave Digital band-pass filter obtained with a normalized 
                                      low-pass to band-pass transformation, structure and magnitude 
                                      transfer characteristics. 
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Bireciprocal LWDF designs. 
 
A bireciprocal filter has the property that it’s outputs, low-pass and high-pass, are exactly their mirror 
images, being reflected around ¼ of the sample frequency. The LWDF structure in such a case will be 
less complex then the structures that were shown before.  
Not all filter types can be exactly mirrored, since there should be a distinct relationship between the 
behavior of the transfer function in the pass-band and that in the stop-band. In fact, only Butterworth 
and Cauer approximations (type ‘A’) will be usable. Butterworth low-pass filters with a cut-off 
frequency of ¼ of the sample frequency are inherently bireciprocal, for Cauer filters only one of the 
ripple values may be chosen while this fixes the other one.   
 
The following example (re)calculates the "Cauer parameter (elliptical) bireciprocal low-pass filter" that 
has been described in detail by L. Gaszi as Example 5  in [Gaz85]. 
The parameters copied from Gazsi, are the filter order N=19, and the stop-band loss value of 76.89 dB. 
 
 
>> Hs = Hs_cauer_birec(19, 76.89); 
>> LWDF = Hs2LWDF( Hs(1) ); 
>> plotHz( LWDF2Hz(LWDF),1,2 ); 
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Figure 28.    Transfer characteristic and 
structure of the 19th order bireciprocal Cauer 
LWDF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 27a and b.    Lattice Wave Digital band-pass filter obtained with a normalized 

                                      low-pass to band-pass transformation, structure and magnitude 
                                      transfer characteristics. 
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The coefficients are calculated to be: 
 
LWDF: ODD filter order, so LOW/HIGH pass filter assumed 
 
Structure appears to be a bireciprocal lowpass/highpass filter. 
Top row all-pass sections : 
  single delay 
  single section, 2 delays :  y01 = -0.22671 
  single section, 2 delays :  y02 = -0.60341 
  single section, 2 delays :  y03 = -0.84001 
  single section, 2 delays :  y04 = -0.95112 
Bottom row all-pass sections : 
  single section, 2 delays :  y05 = -0.06417 
  single section, 2 delays :  y06 = -0.42397 
  single section, 2 delays :  y07 = -0.74221 
  single section, 2 delays :  y08 = -0.90604 
  single section, 2 delays :  y09 = -0.98481 
 

 
Compare the results obtained here with Gazsi's Figures 14a and 14c. Gazsi’s coefficients are copied 
below. Note that there is a difference in the numbering of the adaptors and coefficients. 
    

Toolbox 
notation 

Gazsi 
 

30 

F
 
 
 

Table 2.
y01 119226.03 −=γ  

y02 422602.07 −=γ  

y03 323839.011 −=γ  

y04 847950.015 −=γ  

y05 978063.01 −=γ  

y06 068423.05 −=γ  

y07 327741.09 −=γ  

y08 567905.013 −=γ  

y09 721984.017 −=γ  
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Vlach Band-pass LWDF Designs.  
 
Of course it is also possible to create band-pass LWDFs based on the Vlach approximation: 
 
>> Hs = Hs_bpVlach(6,1, fz2fs([0.13 0.17]), fz2fs([ 0 0.1 0.2]),0,1);  
>> LWDF = Hs2LWDF(Hs); 
LWDF: EVEN filter order, so BANDpass/stop filter assumed 
 

Input

T

γ1

T

γ2

T

γ3

T

γ4

T

γ5

T

γ6

1/2

1/2

−1

+

+

Outputs

bandpass

bandstop

Structure appears to be a bandpass/bandstop filter. 
Top row all-pass sections : 
  2nd degree section       :  y01 = -0.88515 
                              y02 =  0.58890 
Bottom row all-pass sections : 
  2nd degree section       :  y03 = -0.94758 
                              y04 =  0.49278 
  2nd degree section       :  y05 = -0.95050 
                              y06 =  0.67555 
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There are two possibilities to obtain for the LWDF. T

 with Hs2Hz, but this will only return the forward tra
therefore LWDF2HZ has been used, which returns a MATLA
reverse function that are reconstructed from the LWDF p

)(zH
)(sH

 
>> Hz1 = Hs2Hz(Hs);  % only a single Hz 
>> Hz2 = LWDF2Hz(LWDF); % Hz(1) and Hz(2), obt
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Figure 28.    Structure and Magnitude 
Transfer characteristics for a 6th order Vlach 
band-pass LWDF. 
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Transmission Line Filter Designs. 
 
A lumped element ladder circuit has to be transformed first, before it can be realized in a microwave 
technology. In such a high frequencies environment, it is no longer possible to work with floating 
inductances or capacitors as occur in series arms. A transformation is usually accomplished by shifting 
in Unit Elements from the input and/or the output into the circuit making use of Kuroda identities to 
transform a “Unit Element − series arm element” into a “Unit Element − shunt arm element” 
combination. 
With the Vlach-approximation functions from the toolbox, the insertion of Unit Elements is 
straightforward and done with the aid of a binary vector. A Unit Element can be inserted to the left of 
every inductor or capacitor and changes an impedance function to its right describing the rest of the 
circuit into a reactance function and vice versa. The examples below illustrate the process. A zero 
means the absence, a one the presence of a Unit Element before the particular inductance or 
capacitance. 

RS

C1

L2

C3

L4

C5 RL

A strong feature of this toolbox is that the Unit Elements actually contribute to the filter’s transfer 
characteristic:  each Unit Element increases the order of the approximation of the pass-band and adds 
a small amount of attenuation in the stop-band (up to 7.7 dB at high frequencies). 
 
 
 
without  Unit Elements: 
 
>> nlp_ladder('vlach',5,1,[],[],[]); 
 
 

RS

C1 UE2 C3

L4

C5

L6

RL

 
 
 
One Unit Element, before the first inductor: 
 
>> nlp_ladder('vlach',5,1,[],[],[ 0 1 ]); 
 
 
 

RS

C1 UE2 C3 UE4 C5

L6

C7 RL

 
 
Two Unit Elements: 
 
>> nlp_ladder('vlach',5,1,[],[],[ 0 1 1 0 0 0]); 
 
 
 
 

… or, to immediately obtain the complete filter in which only shunt capacitors are present: 
 
>> nlp_ladder('vlach',5,1,[],[],[ 0 1 1 1 1 0]); 

RS

C1 UE2 C3 UE4 C5 UE6 C7 UE8 C9 RL
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Figure 29.     
Chebyshev low-pass filter with 
4 additional Unit Elements.. 
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with the following element values: 
 
   Rs    1.00000 Ohm 
   C01   2.17298 F   in shunt arm 
  UE02   1.37838 Ohm 
   C03   3.07531 F   in shunt arm 
  UE04   1.43977 Ohm 
   C05   3.14506 F   in shunt arm 
  UE06   1.43977 Ohm 
   C07   3.07531 F   in shunt arm 
  UE08   1.37838 Ohm 
   C09   2.17298 F   in shunt arm 
   RL    1.00000 Ohm 
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Figure 30.   Magnitude Transfer functions of the 5th order low-pass Chebyshev(!) filter 
                      without and including 4 Unit Elements. The horizontal scale has been 
                      adapted to facilitate the comparison with the APLAC plots. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The plot of Figure 30 clearly shows the increased roll-off in the transition band and the increased 
number of peaks and valleys in the pass-band (5th order with 4 UEs = 9, equivalent to 9th order). 
The equations describing the transfer function can be obtained with 
>> Hs4 = nlpf('vlach',5,1,[],4); 
>> Hz4 = Hs2Hz(Hs4);  

because of the similarities in the frequency behavior of discrete-time and microwave circuits.  
 
The correctness of the computations above can be verified with the aid of a third party program like 
the APLAC RF DESIGN TOOL. With APLAC it is possible to simulate transmission line filters. 
The element values listed above have been entered in the APLAC input format in a file 
'vlach_5_1_4ue.i' (see Figure 33), describing a transmission line filter with its cut-off frequency at  
1 GHz. The resulting simulation output is given in Figure 31, and reveals a striking resemblance with 
what the Toolbox predicts. 
Figure 31 has been created with the latest release of APLAC at the time of writing this document, viz. 
version 8.10 of the free downloadable Student Version (see http://www.aplac.com/ ). 
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Figure 31.    Results of the APLAC .i-file 
listed in Figure 33 based on the values 
calculated for the example of Figure 29 with a 
cut-off frequency of 1 GHz.  
The plots use the same axes scaling as is used 
in Figure 30. 
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RS

C1

L2

C3 UE4 UE5 RL

Although it was mentioned above that Unit Elements can be inserted to the left of the lumped 
elements, this is not the complete story. Access UEs are padded to the right of the ladder, and if no 
lumped elements should be present at all, a filter consisting of only UEs can be constructed. 
 
 
 
 
>> nlp_ladder('vlach',3,0.1,[],[],[ 0 0 0 1 1 ]); 
 
 
 
 
 

RS

UE1 UE2 UE3 UE4 UE5 RL

>> nlp_ladder('vlach',0,1,[],[],[ 1 1 1 1 1 ]); 
 
 
 
 
 
 
 
 
 

Figure 32.   Examples of Unit Element insertions.  
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 $ Filename:  vlach_5_1_4ue.i 
 $ see User's Guide, Figure ??? 
 $ H.J. Lincklaen Arriens 
 
 Declare IVAR 
 +  C01  = 2.17298 
 +  RUE2 = 1.37838 
 +  C03  = 3.07531 
 +  RUE4 = 1.43977 
 +  C05  = 3.14506 
 +  RUE6 = 1.43977 
 +  C07  = 3.07531 
 +  RUE8 = 1.37838 
 +  C09  = 2.17298 
 
 $---------------------------------------------------- 
 $ Transmission lines 
 $ type - name - node connections - electrical length - ref freq in GHz – impedance 
 $---------------------------------------------------- 
 Tline line1  1  0  2  0  EL_LENGTH 90 FC 2  Z  1/C01 
 Tline line2  1  0  3  0  EL_LENGTH 90 FC 2  Z  RUE2 
 Tline line3  3  0  4  0  EL_LENGTH 90 FC 2  Z  1/C03 
 Tline line4  3  0  5  0  EL_LENGTH 90 FC 2  Z  RUE4 
 Tline line5  5  0  6  0  EL_LENGTH 90 FC 2  Z  1/C05  
 Tline line6  5  0  7  0  EL_LENGTH 90 FC 2  Z  RUE6 
 Tline line7  7  0  8  0  EL_LENGTH 90 FC 2  Z  1/C07  
 Tline line8  7  0  9  0  EL_LENGTH 90 FC 2  Z  RUE8 
 Tline line9  9  0 10  0  EL_LENGTH 90 FC 2  Z  1/C09  
 
 $---------------------------------------------------- 
 $ 2-port definition 
 $---------------------------------------------------- 
 DefNPort ideal_splane_filt 2 1 0 1.00000 9 0 1.00000 
 
 $---------------------------------------------------- 
 $ Output commands 
 $---------------------------------------------------- 
 Sweep "S-parameter Analyse" 
 + LOOP 2000 FREQ LIN 0.0001 2 
 + WINDOW 0 
 + Y "|S21|" "(dB)" -60 10.0 GRID 
 + WINDOW 1  
 + X "f" "Hz" 0.0001 1.2 
 + Y "|S21|" "(dB)" -1.5 0.5 GRID 
 
 
 Show 
 + WINDOW 0 Y MagdB(S(2,1)) 
 + WINDOW 1 Y MagdB(S(2,1)) 
 EndSweep 
 

 
 

Figure 33.   Listing of a transmission line implementation of the low-pass Chebyshev(!) 
                       filter with 4 Unit Elements as shown in Figure 29.  
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Although of no practical use, the strength of this toolbox function is also demonstrated with the 
following example in which just one Unit Element is inserted at an arbitrary location in the ladder 
circuit. The MATLAB result is again verified in APLAC (only a part of the .i-file is shown) 
 

RS

C1

L2

C3 UE4 C5

L6

RL

>> nlp_ladder('vlach',5,1,[],[],[ 0 0 0 1 0 0]); 
 
 
 Declare IVAR 
 + C01  = 2.14956 
 + L02  = 1.10085 a) 
 + C03  = 3.04808 
 + RUE4 = 1.41224 
 + C05  = 2.92797 
 + L06  = 0.80819 
     
 $---------------------------------------------------- 
 $ Transmission lines 
 $---------------------------------------------------- 
 Tline line1  1  0  2  0  EL_LENGTH 90 FC 2  Z  1/C01  
 Tline line2  1  4  3  3  EL_LENGTH 90 FC 2  Z  L02  
 Tline line3  4  0  5  0  EL_LENGTH 90 FC 2  Z  1/C03  
 Tline line4  4  0  6  0  EL_LENGTH 90 FC 2  Z  RUE4 
 Tline line5  6  0  7  0  EL_LENGTH 90 FC 2  Z  1/C05   
 Tline line6  6  9  8  8  EL_LENGTH 90 FC 2  Z  L06  
 
 $---------------------------------------------------- 
 $ 2-port definition 
 $---------------------------------------------------- 
 DefNPort ideal_splane_filt 2 1 0 1.00000 9 0 0.37598 
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Figure 34.    APLAC plots showing the 
simulation of the ladder circuit of a) if 
written as a transmission line filter in b). 
 

b) 
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GUI’s that cover all the above. 
 
For an easy access of the majority of the Toolbox functions, the wdf_GUI (Graphical User Interface),  
shown below, and the more specific bpVlach_GUI (for LWDFs only) have been developed. 
Given the examples and explanations in the previous sections, there shouldn’t be any problems with 
the possibilities offered by and the parameters needed by the GUI’s.  
Parameter fields that are not needed for a particular design are grayed-out while those that are 
needed pop-up and need to be filled in. If a parameter may contain more than one value, like the 
‘Stopband Zero Frequencies’ or the ‘Unit Element Positions’, just separate the individual values with 
a space (or spaces).  
Output values are written to the MATLAB console window and can be used for further processing. 
 
Specific design properties, e.g. whether a bireciprocal LWDF structure can be used, are automatically 
detected. 
 
 

 
 

Figure 35.   Screen shot of the wdf_GUI. 
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Figure 36.   Screen shot of the bpVlach_GUI for rapidly creating 
                      LWDFs based on the Vlach approximation.   
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Interface to Scheduling Toolbox. 
 
This toolbox contains two functions to translate the WDF and LWDF structures into text files in 
which all operations are listed in a way that it can be read by the Scheduling Toolbox,  
viz.  WDF2cir and LWDF2cir.  
Both function also return the component values in a structure that also can be recognized by the 
Scheduling Toolbox. 
 
When WDFs using 2-port adaptors are to be scheduled, there is no guarantee that when the delay 
element between a 3-port and its corresponding 2-port adaptor is connected from port B2 of 
Adaptor(n) to port A1 of Adaptor(n−1) – as has been done in all WDF-figures up to now–  will result in 
a faster circuit then when it should be  connected  from port B1 of Adaptor(n−1) to port A2 of 
Adaptor(n).  Therefore, the position of the delay elements can be specified in WDF2cir (and in showWDF, 
see Figure 37). 
 
  NlpLadder = nlp_ladder('cauer',5,0.1,45,'a',1,'z'); 
  WDF = ladder2WDF(NlpLadder,'2p_sym'); 
  WDF2cir(WDF,'r');  % output to screen 
  showWDF(WDF,'r',2); % plot in figure 2 
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 Figure 37.  The location of the delay elements connecting to 2-ports can be 
                      specified (default is the left-most connecting arm). 
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In the LWDF structure, pipeline registers can be inserted easily with LWDF_insRegs before calling 
LWDF2cir: 
supposed that the LWDF structure LWDF known here is the one from Figure 27a, then 
>> LWDFp = LWDF_insRegs(LWDF,[ 1 1 ]);  
>> showLWDF(LWDFp,'L') 

will result in a structure like Figure 38 which allows more parallelism when scheduling. 
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Figure 38.   Pipelined version of the LWDF of Figure 27a.  
 
 
 
Here it would also have been possible to position the delay elements between the adaptors in the right-
most arm instead of in the left arm by using  showLWDF(LWDFp,’r’). 
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Epilog. 
 
It is by no means expected that this Toolbox should ever cover all kinds of design wishes.  
When assembling this documentation −some time after the functions have actually been written− lots 
of omissions, improvements and extensions came to mind, but time goes on and other projects are 
waiting …. 
Since – except for the p-code files – the functions are normal MATLAB code, everyone can tailor the 
code to his/hers own needs.  
Intermediate results may be the starting point for implementations in specific techniques or 
technologies.  
An automatic generation of DSP code, whether or not with intervention of the Scheduling Toolbox 
(which generates VHDL), is surely possible. 
Also, the setup of the (MATLAB) WDF structure leaves enough possibilities to diverge from the simple 
ladder structures shown here.  
 
 
The Toolbox has been tested on Windows XP PC’s, and also with the R14 Student version on a Linux 
system (KDE on Slackware). As expected, the GUIs on Linux will need some visual adjustments.  
 
Although the majority of the functions initially were written in MATLAB Release 13, some 
modifications and extensions were made using Release 14 features. Rewriting these parts of the code 
(particularly used for nested functions) to be executable with Release 13 again, including the GUIs, 
has not been considered and is left to the confirmed, for whatever reason, R13 user. 
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