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Introduction. 
 
 
This toolbox has been primarily developed to support the lectures on “Methods and algorithms for 
system design (et4054)”, which is a compulsory course for MSc students in Computer Engineering and 
a specialization course for Electrical Engineering MSc students at the Delft University of Technology. 
Course material is based on the book Synthesis and Optimization of Digital Circuits by G. De Micheli.  
With this toolbox it is now possible to create a synthesizable VHDL description for a (signal 
processing) circuit, or a mathematical function, that can be described in a data-flow graph (DFG).   
This DFG is internally reduced to a sequence graph (SG), and this one can be scheduled –i.e. the start 
time of each operation is determined according to a specific algorithm– to obtain a scheduled sequence 
graph (SSG). 
 
At this moment the toolbox supports the following scheduling algorithms: 
• As Soon As Possible Scheduling algorithm (ASAP), 
• As Late As Possible Scheduling algorithm (ALAP),  
• cheduling (ForceD), and Forced-directed S
 List Scheduling. •

 
Resource sharing, register sharing and binding algorithms are then used to create both a MATLAB 
and a VHDL description of the SSG in a fixed-point data representation.  
The MATLAB files can be used e.g. for fast testing the (fixed-point arithmetic) implementation in a 
larger environment or simply as a reference. 
In the VHDL architectures which are focused on implementation on Xilinx FPGAs, registers and 
multiplexors are used for storing intermediate data values and connecting the available resources. 
This generally will result in more hardware then when dedicated RAM is used but avoids the time 

ken by read and write actions. ta
 
The setup implies that –apart from the ‘data clock’ that takes care for providing the input data and 
reading of the output data– a (high speed) ‘SSG clock’ that takes care for the internal states in the 
SSG should be available. If a scheduled implementation should need x SSG-clock ‘states’ (= cycles), 

. the SSG-clock should have at least an x times higher frequency then the highest expected data rate
There is no need that the data clock is derived from the SSG clock (or vice versa) and they can be 
completely asynchronous, provided that there is some kind of handshaking mechanism. The only 
constraint is that the output data from the SSG should be stable when the next data-read clock edge 
rrives. a

 
The DFG that has to be realized has to be written in a proprietary “.cir”-format (ASCII file) which is 
extensively described in the Reference Guide. In this User Guide we will use an example to explain the 
complete design trajectory. The example is based on a Lattice Wave Digital Filter implementation of a 
5th order Cauer low-pass filter that has been created with the aid of our (L)WDF Design Toolbox.  
In Appendix B of this manual, the MATLAB script is given that can be used to verify the data in the 

llowing chapters. fo
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Installation. 
 
 
 
The Toolbox will be made available as a zip-file, that should be unzipped to a directory of your choice, 
thereby preserving the directory structure of the zip-file ( ‘Use folder names’ ). 
 
Assuming that you have chosen to unzip to <$STBX_DIR>, you will find  

 all the toolbox’ MATLAB-files in <$STBX_DIR> 

and the new subdirectories 

 <$STBX_DIR>\bin         , which contains an executable (dot.exe) and some dll-files, 

 <$STBX_DIR>\vhdl        , which contains two .vhd-files, and 

 <$STBX_DIR>\example_cirs, which contains some .cir examples files. 

 
Adjust the Properties of the MATLAB icon on your desktop, so that MATLAB starts in <$STBX_DIR>, 
or add <$STBX_DIR> to your MATLAB path. 
 
If you had chosen for a customized directory structure, be sure to edit the file fConfig.m ( default in 
<$STBX_DIR> ), such that the string variables 

 dotDir  contains the absolute path to the directory where dot.exe and the dll-files reside, 

  and 

 vhdDir contains the absolute path to the directory where the .vhd-files have been written. 
 
The GUI can see the example .cir-files when started with  
 schedGUI( ’<$STBX_DIR>\example_cirs’ ); 
 
 
Note concerning  dotDir:    

For drawing of the graphs, the toolbox needs some executables from the Graphviz (Graph 
Visualization Software) package, developed by AT&T Research. Graphviz is now open source software 
that has been extended in several ways, and that is available from http://www.graphviz.org/. 
The Graphviz layout programs take descriptions of graphs in a simple text language, and can make 
diagrams in several useful formats. The program dot.exe (on Windows) that we use, draws directed 
graphs in a.o. png, jpg or hpgl format and will be located in the dotDir directory. 
From Release 14 on, MATLAB contains an own stripped down version of this dot program. To ensure 
that the correct full blown version is executed, we need the dotDir variable. 
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A 5th Order Cauer Filter. 
 
 
As written before, we will introduce you to the capabilities of the toolbox by describing how to obtain 
the VHDL description of a filter example. We will start with some basic filter theory to clarify the 
circuit and the test signals that are used in the example.  
 
Cauer or elliptic filters show an equiripple behavior of the magnitude transfer function, both in its 
pass-band as well as in its stop-band. For this example a discrete-time domain 5th order low-pass filter 
has been designed with only 0.1 dB ripple in the pass-band, 45 dB ripple in the stop-band and a -3dB 
cut-off frequency at 0.34 times the sample frequency. 
This low-pass filter can be mathematically described with its transfer function in the frequency 
domain 
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Table 1 shows the coefficient values for the design parameters mentioned above, while the resulting 
magnitude transfer function is given in Figure 1a. Remind that this characteristic is relative to the 
sample frequency that is chosen, i.e. for a sample frequency of 44.1 kHz the −3dB cut-off frequency 
point will be at about 15 kHz. 
 
 

    Table 1.   coefficienst for the 5th order Cauer filter of Figure 1. 

0b   0.20391160908339 0a   1.00000000000000 

1b   0.87047736117673 1a   1.47740114108676 

2b   1.61565809470470 2a   1.72643982821984 

3b   1.61565809470470 3a   0.82548383012058 

4b   0.87047736117673 4a   0.34088842960612 

5b   0.20391160908339 5a   0.00988090089635 
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Instead of measuring the complete transfer function, it is often easier –at least for a first test– to 
characterize the filter in the time domain. It is common practice to use the well-known unit impulse or 
unit sample function, ][nδ , defined by 

               ….. (2a) 
⎩
⎨
⎧ =

=
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0for,1
][

n
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and the unit step function, u[n], which is defined by 
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for this purpose.  
 
 
Our filter, when subjected to a unit impulse function or a unit step function, will result in the output 
response values given in Table 2. For completeness, Figures 1b and c show these responses in 
graphical format.  
 
 
 

    Table 2.    unit impulse response and unit step response. 

First 17 output samples, 
when at a unit impulse 
function is applied to the 
input: 

0=n

 
 
   n 

First 17 output samples, 
when at 0=n a unit step 
function is applied to the 
input: 

   0.20391160908339 
   0.56921811723610 
   0.42265347541487 
  -0.15981719677043 
  -0.16248578323008 
   0.17493475418864 
   0.00429756663652 
  -0.12393053401583 
   0.08823847261738 
   0.02201969023977 
  -0.08576118081758 
   0.05805258511653 
   0.01526273551051 
  -0.06035714314809 
   0.04391746724945 
   0.00777806140658 
  -0.04326483749048 

   0 
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
  10 
  11 
  12 
  13 
  14 
  15 
  16 

   0.20391160908339 
   0.77312972631949 
   1.19578320173436 
   1.03596600496393 
   0.87348022173384 
   1.04841497592248 
   1.05271254255900 
   0.92878200854316 
   1.01702048116054 
   1.03904017140032 
   0.95327899058273 
   1.01133157569926 
   1.02659431120977 
   0.96623716806168 
   1.01015463531113 
   1.01793269671771 
   0.97466785922723 
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 Figure 1b.     Impulse response of the 5th order Cauer filter. 

    Figure 1a.    Magnitude transfer function of the 5th order Cauer filter. 

 
 
 
 
 
 

 Figure 1c.     Step response of the 5th order Cauer filter. 
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Lattice Wave Digital Filter implementation. 
 
 
There are a lot of possible structures which can be used to realize the previously mentioned transfer 
functions with. Here, we will opt for an implementation as a Lattice Wave Digital Filter. In the User’s 
Guide for the (Lattice) Wave Digital Toolbox this type of structures has been described in detail. 
Figure 2 shows a block diagram of the resulting structure (see the LWDF Toolbox’s Reference Guide 
for what is inside the rectangular blocks, it will also be clarified later on).  
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Figure 2.     Block diagram of a Lattice Wave Digital Filter that can be 
                      used to realize our 5th order Cauer functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By nature, wave digital filters will show 2 outputs, here denoted with Bfwd and Brev, of which Bfwd will 
show the specified low-pass transfer function and Brev  a complementary high-pass function.  Although 
we only defined the low-pass transfer function, for the sake of this example the high-pass function will 
be calculated as well. 
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Description of the filter in a .cir file. 
 
 
We have to describe the structure of this LWDF filter in a way that it can be understood by the 
scheduling software, i.e. the circuit has to be translated into operations and calculations that can be 
implemented on real multipliers and adders/subtractors. The elements that can be used −functional 
block-elements as they are often used in signal processing literature− are depicted in Figure 3. 
 
 
 
 
 

++

++ T-

x1 [ ]n

x1 [ ]n

y n [ ]

y n [ ]

x [ ]n

x [ ]n

x [ ]n

y n [ ]

y n [ ]   = − 1x [ ]n

y n [ ]    = − − 1x [ ]n

x2 [ ]n

x2 [ ]n

k

add:  y n n n [ ] [ ] [ ]= +   x x1 2 

subtract:  y n n n [ ] [ ] [ ]= −   x x1 2 

ALU functions

(constant) multiplier:    k  = ∗y n n [ ] [ ]x

one clock cycle delay

-T

Figure 3.    The available basis elements for scheduling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The scheduling software expects a simple ASCII text file, for which we have defined a number of rules. 
The name of the text file should have the extension ‘.cir’.  An extensive description of the syntax, 
structure and the thoughts behind a .cir-file can be found in the Reference Guide 
 
First, we have to label the circuit in a way so that we can write all necessary information in the .cir-
file. Therefore, we have to separate the operations that can be scheduled from those that cannot be 
scheduled. In our case, we can schedule only multiplications, additions and subtractions. These 
resources have to be combined in one block, while we will use input ports and output ports for 
connections to delay elements. Figure 4 can help in recognizing the parts to be scheduled (the shaded 
area) and the input and output ports. 
 
Now ‘inp’ is the overall input port of the filter ( x[n] ) and ‘o_lp’  ( y [n] ) and ‘o_hp’ the output ports.  
Using the correct syntax and assignment rules, may result in the cir-file shown in Figure 5. This .cir-
file, let’s call it ‘LWDF_5.cir’, will be the input for the scheduling software. 
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   % lowpass/highpass filter of Order 5 
   % as a Lattice Wave Digital Filter structure. 
   % Code generated by LWDF2cir.m on 21-Nov-2005 12:19:40. 
 
   % external input 'inp', external outputs 'o_hp' and 'o_lp' 
 
 
   % TOP ROW ALL-PASS SECTION(S): 
   % single section, single delay: 
   v1A = i2A - inp; 
   m1A = a1A * v1A; 
   v2A = inp + m1A; 
   o1A = v2A; 
   i2A = To1A; 
   v3A = i2A + m1A; 
 
   % 2nd degree section, 2 delay elements: 
   v1B = v6B - v3A; 
   m1B = a1B * v1B; 
   v2B = v3A + m1B; 
   o1B = v2B; 
   i2B = To1B; 
   v3B = v6B + m1B; 
   v4B = i3B - i2B; 
   m2B = a2B * v4B; 
   v5B = i2B + m2B; 
   o2B = v5B; 
   i3B = To2B; 
   v6B = i3B + m2B; 
 
 
   % BOTTOM ROW ALL-PASS SECTION(S): 
   % 2nd degree section, 2 delay elements: 
   v1C = v6C - inp;  
   m1C = a1C * v1C; 
   v2C = inp + m1C; 
   o1C = v2C; 
   i2C = To1C; 
   v3C = v6C + m1C; 
   v4C = i3C - i2C; 
   m2C = a2C * v4C; 
   v5C = i2C + m2C; 
   o2C = v5C; 
   i3C = To2C; 
   v6C = i3C + m2C; 
 
 
   % OUTPUT SECTION: 
   v1 = v3C - v3B; 
   o_hp = (v1 >> 1);   % v1/2 

Multiplying with a power of 2 (e.g. ½) 
can be replaced by a shift operation, 
which will result in far more efficient 
hardware.   

‘inp’ appears only at the right 
hand side of assignments, and 
thus is considered to be an 
external input. ‘i2A’ is a one SSG-clock cycle delayed version of ‘o1A’.

The .cir-file is the set of all assignments, where 

• inputs start with a ‘i’ and can be at the left or 
the right hand side of an assignment, 

• outputs start with a ‘o’ and are either the result 
of an operation or directly connected to an input, 

• (constant) coefficients start with an ‘a’ or a ‘c’, 

SSG-outputs that are registered and fed-ba• ck to 
SSG-inputs are preceded by a ‘T’. 

Assignments are optionally terminated with a ‘;’ 

comments are indicated by 
starting with a %-sign and 
are skipped 

   v2 = v3C + v3B; 
   o_lp = (v2 >> 1);   % v2/2 
 
 
   % (c) HJLA, 2005 
   % [EOF] 

‘o_lp’ (also ‘o_hp’) appears 
only once at the left hand side of 
an assignment, is connected to 
an operation and thus is  
considered to be an external 
output. 

Figure 5.    Listing of the text file LWDF_5.cir that  
                     will be the input for the scheduling software. 
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The Graphical User Interface (schedGUI). 
 

 
The Toolbox consists of a set of MATLAB functions that can be used from the MATLAB command 
window. All functions are supplied with help comments, while a complete description of all functions 
can be found in the Reference Guide. 
There is also a graphical user interface, schedGUI, which combines a number of the commonly used 
functions and eases the comparison of the scheduling methods.  
This GUI can be started from the directory in which we have saved our .cir-file. Let’s denote this 

directory with <$OUR_CIR_DIR>.  OR PATH and schedGUI(‘<$OUR_CIR_DIR>’). 
 
Figure 6 shows a screen shot of this schedGUI, with displayed the result when our LWDF_5 filter 
should be scheduled according to the ‘List’ method given the resource constraint that only 2 MUL-
tipliers and 2 ALUs (which can perform both the add and the subtract calculations) are available. 
In the Figure, the MULtipliers are supposed to perform with a latency of two SSG-clock cycles, while 
the ALUs will be ready in only one SSG-clock cycle. 
 
 
 

Figure 6.    Screen-shot of schedGUI working with the LWDF_5.cir file. 
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It can be seen that the result of the calculations will be valid after 11 SSG-clock cycles. In the lower-
right corner also the distribution of the resources over the clock cycles is shown, and the number of 
additional registers needed for life-time extension of intermediate variables. Obviously, the GUI 
expects that 6 additional REGisters will be needed here. It is important to note that this will only be 
the case if registered MULtipliers and registered ALUs are used, as have been described in the 
architectures in the resource_reg.vhd file in this toolbox. 
In other words, schedGUI expects that the VHDL descriptions of the MULtiplier and ALU components 
already provide for registers immediately following the MULtiplier core and the ALU core, that can 
store the results of the computation done in the ‘core’ when they are clocked at the end of an SSG-
cycle. Clock-enable signals control when and which computational results should be registered. 
 
To get an impression of the resources (chip area) vs speed that result from the scheduling methods, 
the function xplore can be used. Figure 7 shows  the design space for the LWDF-5 circuit for the 
arbitrary (and unrealistic) assumption that a MULtiplier would take up twice the area, and an ALU 
1.5 times the area of a REGister. Also latencies of 1 clock-cycle are assumed for MULs and ALUs. 
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  Figure 7.     The result of xplore('LWDF_5.cir', [2 1.5 1]). 

                       In the picture, (a,b,c) indicates the need for a  MULtipliers,  
                       b ALUs  and c REGisters, where c is the sum of all registers, 
                       i.e. including the feedback, an input and output registers. 

 
 
 
 
 
 
In Figure 8 four possible scheduling schemes are presented, while the one chosen for the 
implementation as a 2’s complement fixed-point architecture is shown explicitly in Figure 9.  
For this schedule we will first generate MATLAB files and a MATLAB testbench for easy debugging 
and enabling the incorporation of this circuit in a larger MATLAB test-environment if needed. 
Generally, debugging and determining the optimal sizes of the fixed-point parameters is much easier 
with MATLAB then in a VHDL environment.
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ASAP ALAP

Force Directed List  1, 2

7 States,  3 MULs,  6 ALUs,  5 Additional REGs

7 States,  3 MULs,  3 ALUs,  4 Additional REGs

7 States,  3 MULs,  7 ALUs,  4 Additional REGs

9 States,  1 MUL,  2 ALUs,  5 Additional REGs

Figure 8.     Several possible scheduling 
                      schemes  for LWDF_5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14  Scheduling Toolbox for MATLAB   User’s Guide 



 
 
 

Figure 9.     The LWDF_5 schedule that will be implemented 
                      ( ‘List’ with 1 MULtiplier and 2 ALUs, all resources 
                         finished within one  SSG-clock cycle).  
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The MATLAB testbench. 
 
 

Suppose that the .cir-file(s) are in a directory indicated with <$OUR_CIR_DIR> and that the toolbox files 
are either in the same directory or that they are incorporated in MATLABPATH. 
Then the schedule from Figure 9 will be translated into a fixed-point description with 
 
>> gen_mTB( 'LWDF_5.cir', 0, 'List', 1,1, 1,2 ); 
 
See the Reference Guide for an explanation of the syntax and all possibilities. 
gen_mTB will create a sub-directory <$OUR_CIR_DIR>\LWDF_5\matlab in which it will write its m-files, 
viz.  testbench_LWDF_5_auto.m  and TB_LWDF_5_auto.m  
(all names are derived from the .cir-file name).   
Of these, TB_LWDF_5_auto.m  simulates the SSG (of course, without a real SSG-clock). 
  
The testbenches (both the MATLAB as the VHDL ones) read their input values from a .INP-file in 
which data should be written in VHDL hex-format on a one variable per line basis. 
Notice that the sequence in which the constant coefficient should be listed in this .INP-file is reported 
by gen_mTB in the command window, viz.  a1A, a1B, a1C, a2B, a2C. 
In this example the coefficients are generated with the (L)WDF Design Toolbox, and are in the correct 
format, but not in the correct sequence, so a little reshuffling will be needed. 
 
Quantizing the floating-point coefficients into their correct fixed-point counterparts can be done with 
the toolbox functions toSFixp and hex2fixp, or with gen_INP which is specifically meant to create 
.INP-files. Here, we will opt for a representation with 17 bits, of which 15 are reserved for the fraction 
part (see Figure 10 and the Reference Guide). 
 
Let the coefficients be given as a MATLAB structure coeffs, with 
 
coeffs =  
    'a1A'    [-0.03119210537118] 
    'a1B'    [-0.82935592147589] 
    'a1C'    [-0.38195386087389] 
    'a2B'    [-0.52095844720462] 
    'a2C'    [-0.35687921966298] 
 

then a .INP-file for a unit step input function ]2[ −nu  can be created with  

 
>> gen_INP( 'LWDF_5\matlab \LWDF_5.INP', [17 15], coeffs, [0 0 ones(1,10)] ); 
>> cd LWDF_5\matlab   
 
or  alternatively, with 
 
>> gen_INP( 'LWDF_5.INP', [17 15], coeffs, [0 0 ones(1,10)] ); 
>> addpath( '<$OUR_CIR_DIR>\LWDF_5\matlab' ) 
 
The difference will be the directory where the .INP and .OUT-files will be written 
The user should find out for her/himself whether she/he prefers to switch between directories or to 
end up with a somewhat cluttered single directory. 
In any case, the LWDF_5.INP file should look like Table 3. 
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    Table 3.    The LWDF_5.INP file for our Cauer filter. 
 

   
  -- [17 15] fixed-point format 
  -- coefficients: a1A,a1B,a1C,a2B,a2C 
  x"1FC02" 
  x"195D8" 
  x"1CF1C" 
  x"1BD51" 
  x"1D252" 
  -- input function 
  x"00000" 
  x"00000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 
  x"08000" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

whole number
part

whole number
part

fraction part

binary point
or

radix point

binary point
or

radix point

- - -

- - -

M bits

N bitsx
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outside SSG
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lsb
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Figure 10.     Fixed-point bus width  (signed 2’s complement) can be 
                        (left)  extended for the computations inside the SSG.  
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The next thing is to determine whether the total number of bits (17) will be sufficient to represent all 
intermediate results (for this input signal only!). With cumulative additions or subtractions inside the 
SSG, it can certainly be expected that some of the intermediate results will grow larger than, or more 
negative than, the values that can be represented with the 2 integer bits that we defined. 
We can expand the integer part of the fixed-point number by passing a 3rd number in the fixed-point 
parameter to the testbench file (see again Figure 10).  
 
Let’s start by not expanding any bus and see what happens: 
 
 
>> testbench_LWDF_5_auto( [17 15 0], 0 ); 
Reading file 'LWDF_5.INP' ... 
o_hp:  x"00000"    0.000000  
o_lp:  x"00000"    0.000000  
o_hp:  x"00000"    0.000000  
o_lp:  x"00000"    0.000000  
o_hp:  x"016CA"    0.178040  
o_lp:  x"01A19"    0.203888  
o_hp:  x"1F4F2"   -0.0863647 
o_lp:  x"062F5"    0.773102  
Warning: overflow ... 
> In ALU at 91 
  In TB_LWDF_5_auto>lfDFG at 38
  In TB_LWDF_5_auto at 9 
  In testbench_LWDF_5_auto at 57 
Warning: overflow ... 
> In ALU at 91
  In TB_LWDF_5_auto>lfDFG at 62 
  In TB_LWDF_5_auto at 9 
  In testbench_LWDF_5_auto at 57 
o_hp:  x"018EE"    0.194763  
o_lp:  x"1990E"   -0.804260  
Warning: overflow ... 
> In ALU at 91
  In TB_LWDF_5_auto>lfDFG at 26 
  In TB_LWDF_5_auto at 9 
  In testbench_LWDF_5_a….. 

 
----   executation aborted ---- 
 
 
The text above indicates that the testbench calculates and writes the output data for both o_hp and 
o_lp in hex and in decimal format, but that at certain moment in time overflow errors occur which 
will invalidate one or maybe both of all following output values (there is feedback in the system). 
 

We can pinpoint the error more accurately by running the testbench in ‘debug’-mode, which will show 
all internal results for each PASS (i.e. for each complete loop through the SSG due to a new input data 
value) and for each STATE: 
 
>> testbench_LWDF_5_auto( [17 15 0], 1 ); 
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The following text is a part of the total output data starting at the offending PASS: 
 
PASS 5: 
  === AFTER STATE 1: 
v1A = i2A - inp:   1FFE0 = 07FE0 - 08000 
v4B = i3B - i2B:   11D06 = 00B1A - 0EE14 
  === AFTER STATE 2: 
m1A = a1A * v1A:   00000 = 1FC02 * 1FFE0 
v4C = i3C - i2C:   0573D = 0F004 - 098C7 
  === AFTER STATE 3: 
v2A = inp + m1A:   08000 = 08000 + 00000 
v3A = i2A + m1A:   07FE0 = 07FE0 + 00000 
m2B = a2B * v4B:   0763F = 1BD51 * 11D06 
  === AFTER STATE 4: 
Warning: overflow ... 
> In ALU at 91
  In TB_LWDF_5_auto>lfDFG at 38 
  In TB_LWDF_5_auto at 9 
  In testbench_LWDF_5_auto at 57 
v5B = i2B + m2B:   16453 = 0EE14 + 0763F 
v6B = i3B + m2B:   08159 = 00B1A + 0763F 

 
----   executation aborted ---- 
 
 
We can see now that the addition in operation v5B causes the error, due to the fact that in this number 
format the addition of two positive values results in a negative sum. 
Indeed, the addition  0EE14h + 0763Fh = 0_1110_1110_0001_0100  + 0_0111_0110_0011_1111 
results in the binary number  1_0110_0100_0101_0011 = 16453h, 
which in a 2’s complement notation is a negative number since the msb is ‘1’. 
If we had been working with 18 bits (3 integer bits), then 

      00_1110_1110_0001_0100  
      00_0111_0110_0011_1111 
                              + 
      01_0110_0100_0101_0011 

which is still 16453h but in another number format with a zero msb. 
 
Again, the toolbox functions hex2fixp, fixp2hex and MATLAB’s hex2dec and dec2bin can be helpful 
for a closer look: 

>> NM2 = [17 15]; 
>> NM3 = [18 15]; 
>> hex2fixp('0ee14',NM2) + hex2fixp('0763F',NM2) 
ans = 
    2.7838 
>> fixp2hex( hex2fixp('0ee14',NM2) + hex2fixp('0763F',NM2), NM2 ) 
??? Error using ==> fixp2hex 
FIXP2HEX: signed value "2.78378" doesn't fit in 2 integer bits ... 
 
>> fixp2hex( hex2fixp('0ee14',NM2) + hex2fixp('0763F',NM2), NM3 ) 
ans = 
16453 
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Indeed, the command 
 
>> testbench_LWDF_5_auto( [17 15 1], 0 ); 
 
returns without errors for the given input signal, and the output file LWDF_5.OUT will have been 
created in the current directory. 
FIR5.OUT is a file in a specific hex-format, which can be translated into decimal form using the 
function read_OUT.m (since we have an o_lp and an o_hp, be sure to select 2 outputs): 
 
>> y = read_OUT('LWDF_5',[17 15],2); 

  1:  x"00000" =  0.000000000000000    x"00000" =  0.000000000000000     
  2:  x"00000" =  0.000000000000000    x"00000" =  0.000000000000000     
  3:  x"00000" =  0.000000000000000    x"00000" =  0.000000000000000     
  4:  x"016CA" =  0.178039550781250    x"01A19" =  0.203887939453125     
  5:  x"1F4F2" = -0.086364746093750    x"062F5" =  0.773101806640625     
  6:  x"018EE" =  0.194763183593750    x"0990E" =  1.195739746093750     
  7:  x"1F20E" = -0.108947753906250    x"08499" =  1.035919189453125     
  8:  x"001B5" =  0.013336181640625    x"06FCD" =  0.873443603515625     
  9:  x"00484" =  0.035278320312500    x"08632" =  1.048400878906250     
 10:  x"1F980" = -0.050781250000000    x"086BE" =  1.052673339843750     
 11:  x"004E6" =  0.038269042968750    x"076E1" =  0.928741455078125     
 12:  x"1FFCD" = -0.001556396484375    x"0822C" =  1.016967773437500     
 13:  x"1FBA2" = -0.034118652343750    x"084FE" =  1.039001464843750     
 
 

In here, the 2nd column represents Bfwd a.k.a. o_lp or the wanted low-pass output. 
It can be checked that the maximum absolute difference between these output values and the 
reference values for the low-pass output is about   (Again, this holds true only for the 
investigated samples).  

5103.5 −⋅

 
Notice that using the setup with only one sample signal for both supplying new input values, and 
reading the resulting output from the previous sample (see the timing diagram in the Reference 
Guide), an additional one cycle delay in the output values will occur. 
 
 
 
    Note: Be sure to always use the same [N M]-fixed-point representation for the .INP-file, for the 
                 testbench calculations and for interpretation of the .OUT-results. 
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There is a second reason which may justify the choice for a [17 15 1] representation. 
In the (L)WDF Design Toolbox was mentioned that for this class of filters, the magnitude transfer 
function in the stop-band is extremely sensitive to deviations in the calculated phase characteristics in 
the upper and lower branches of the structure. 
Figure 11 shows the stop-band of the magnitude transfer function for two different fixed-point 
representations, viz. [23 21 1] and [15 13 1]. 
These transfer functions in the frequency domain have been obtained by calculating the impulse 
response of the filter with the MATLAB testbench and subjecting this to an FFT. Care has to be taken 
of course that the sequence is long enough to avoid seeing artifacts of the FFT (4096 points are used).  
 
As expected, it can be seen that the resolution used for the fixed-point calculations directly affects the 
transfer function due to quantizing effects. Our [17 15 1] representation will show a reasonable, all-
be-it not perfect approximation of the ideal stop-band behavior.  
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 Figure 11.     Stop-band reconstruction from the 
                          impulse response with a 4096 point FFT. 
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Generating the VHDL files and testbench. 
 
 
Now we can use (from <$OUR_CIR_DIR>-directory again),  
 
>> gen_VHD( 'LWDF_5.cir', [17 15 1], 0, 'List', 1,1, 1,2 ); 
 
to generate the VHDL design files and the VHDL testbench file. 
In the newly created sub-directory  <$OUR_CIR_DIR>\FIR5\vhdl\ will be written 
• the generated files  LWDF_5_SSG_auto.vhd, LWDF_5_ auto.vhd, testbench_LWDF_5_ auto.vhd, 
• and the files resources_reg.vhd and txt_util2.vhd that are copied from the toolbox’ installation 

tree. 
 
In here  resources_reg.vhd

• the registered multiplier with synchronous reset and clock enable ( ), 
contains the definitions of  

MUL_R

• the registered ALU with synchronous reset and clock enable (ALU_R) that use the signal OPCODE to 
discriminate whether the input values have to be added or subtracted (OPCODE = OP_ADD | OP_SUB) . 

 overflow error. And, There is also overflow, an additional output signal that goes high in case of an
• 

 generic delays that are overruled when latencies other 
 are assigned when calling 

the entity REG_R, which is a register with clock-enable and synchronous reset. 

For simulation purposes, these entities show
gen_VHD.  than 1

 
 
 
        entity LWDF_5 is 
            generic ( N_g     : positive := 17; 
                      M_g     : positive := 15; 
                      NX_g    : positive := 18; 
                      MUL_delay_g : Time := 5 ns; 
                      ALU_delay_g : Time := 2 ns; 
                      REG_delay_g : Time := 2 ns ); 
            port (    Clk        :  in std_logic; 
                      Reset      :  in std_logic; 
                      New_Sample :  in std_logic; 
                      A1A :   in std_logic_vector(N_g-1 downto 0); 
                      A1B :   in std_logic_vector(N_g-1 downto 0); 
                      A1C :   in std_logic_vector(N_g-1 downto 0); 
                      A2B :   in std_logic_vector(N_g-1 downto 0); 
                      A2C :   in std_logic_vector(N_g-1 downto 0); 
                      Inp :   in std_logic_vector(N_g-1 downto 0); 
                      O_hp : out std_logic_vector(N_g-1 downto 0); 
                      O_lp : out std_logic_vector(N_g-1 downto 0); 
                      Done       : out std_logic; 
                      Error      : out std_logic 
                ); 
        end LWDF_5; 
 

 

 
 

user defined settings 

constant coefficients 

        external input(s) 

     e

buswidth of external I/O 
              N bits 

 

xternal output(s) 

22 
  Figure 12a.     The definition of the entity
LWDF

 LWDF_5 in the
                             file _5_auto.vhd. 
 Scheduling Toolbox for MATLAB   User’s Guide 



The file txt_util2.vhd contains a.o. the code needed to perform file access and to read and write 
hexadecimal values.  
 
Finally, LWDF_5_SSG_auto.vhd, LWDF_5_auto.vhd and testbench_ LWDF_5_auto.vhd are the 
descriptions of the circuit and its test environment in increasing level of hierarchy. 
Figure 12a and b list the entity definitions of LWDF_5_SSG and LWDF_5. LWDF_5_SSG is instantiated as a 
component inside LWDF_5’s architecture.  
Notice that the feedback registers in LWDF_5_auto.vhd are inferred automatically (instead of by 
inserting REG components) by the way in which the VHDL code is written. 
 
 
 
 

 
        entity LWDF_5_SSG is  
            generic ( NX_g    : positive := 16; 
                      M_g     : positive := 15; 
                      MUL_delay_g : Time :=  5 ns; 
                      ALU_delay_g : Time :=  2 ns; 
                      REG_delay_g : Time :=  2 ns ); 
            port (    clk   :  in std_logic; 
                      reset :  in std_logic; 
                      start :  in std_logic; 
                      a1A :  in std_logic_vector(NX_g-1 downto 0); 
                      a1B :  in std_logic_vector(NX_g-1 downto 0); 
                      a1C :  in std_logic_vector(NX_g-1 downto 0); 
                      a2B :  in std_logic_vector(NX_g-1 downto 0); 
                      a2C :  in std_logic_vector(NX_g-1 downto 0); 
                      i2A :  in std_logic_vector(NX_g-1 downto 0); 
                      i2B :  in std_logic_vector(NX_g-1 downto 0); 
                      i2C :  in std_logic_vector(NX_g-1 downto 0); 
                      i3B :  in std_logic_vector(NX_g-1 downto 0); 
                      i3C :  in std_logic_vector(NX_g-1 downto 0); 
                      inp :  in std_logic_vector(NX_g-1 downto 0); 
                      o1A : out std_logic_vector(NX_g-1 downto 0); 
                      o1B : out std_logic_vector(NX_g-1 downto 0); 
                      o1C : out std_logic_vector(NX_g-1 downto 0); 
                      o2B : out std_logic_vector(NX_g-1 downto 0); 
                      o2C : out std_logic_vector(NX_g-1 downto 0); 
                      o_hp : out std_logic_vector(NX_g-1 downto 0); 
                      o_lp : out std_logic_vector(NX_g-1 downto 0); 
                      done  : out std_logic; 
                      error : out std_logic 
                ); 
        end LWDF_5_SSG; 

 

 
 
 

default settings, overruled by 
(user) settings in the LWDF_5 
entity. 

buswidth inside SSG 
   NX_g = (N+x) bits 

        all SSG output(s) 

          all SSG input(s) 

 constant coefficients 
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  Figure 12b.     The definition of the entity LWDF_5_SSG in the   
                             file LWDF_5_SSG_auto.vhd. 
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During its run, gen_VHD generates a couple of plots, in which it shows the mapping of the operations 
on the available MULs and ALUs, and where exactly it needs the additional registers. Figure 13 holds 
true for our LWDF_5 example: 1 MUL, 2 ALUs and 5 REGs. 
 
 
 

Figure 13.     The Resource mapping and Registry binding as reported by gen_VHD. 
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Simulation results. 
 
 

         

Clk

50 ns p.e. 90 ns

X clock cycles

Y clock cycles

depending on number of STATES

depending on 'Sample Frequency'

Done

New_Sample

first input data value(s) 
  read from -file.INP

next value(s) read from -file.INP

Reset

all coefficients are read from the -file.INP

output value(s) written to -file.OUT

start PASS 2, STATE 1

 
 
   Figure 14.     Timing diagram of the simulation sequence.. 
 
 
 
The testbench starts each run of the simulation (see Figure 14) with an initialization phase in which 
an asynchronous Reset is issued that clears all internal registers. At the first positive going edge of the 
(SSG-) Clk when Reset is high, all coefficients from the .INP-file are read and the Done bit goes high 
to signal that the SSG is ready and awaiting. 
 
At each New_Sample (= Start) going high, a new input data value (or as many input values as there 
are external inputs) is (are) read from the .INP-file. At the first positive going edge of the clock, the 
SSG process sets Done low and starts with its first STATE. The STATES are advanced each clock 
period. Finally, its Done signal goes high again, and everything is halted until the next sample arrives.  
When this actually happens is, of course, determined by the sample frequency to SSG clock ratio and, 
when the sample frequency is relatively low, can take a large number of SSG clock cycles. In the 
simulation testbench, the time that a new sample pulse trails the Done edge is fixed and set to a value 
of 90 ns, slightly less then 2 clock periods (one Clk-period is set to 50 ns). 
 
The .OUT-file is written each time that Done goes low with the same number of output values as there 
are external output ports. 
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All VHDL files in 
<$OUR_CIR_DIR>\FIR5\vhdl\ together with 
the .INP-file, are needed for the simulation. 
Usually this means that the .INP-file used 
with MATLAB has to be duplicated in the 
directory where the simulator’s project file 
has been created. 
 
Figure 15 shows a screen-shot of the Wave 
window that can be obtained by running the 
VHDL files through the ModelSim s
All in- and o

imulator.  
utput signals of the LWDF_5 block 

( i.e. ‘Signals in Region’) are shown here.  
See the Reference Guide for an explanation 

 

ust like the MATLAB testbench, the VHDL 

arison of both LWDF_5.OUT-files reveals 

 

of the stimuli signals and time steps that are
used for the simulation. 
 
J
testbench writes it results to a  LWDF_5.OUT-
file. 
Comp
that they are completely identical (except for 
the comment lines), from which can be 
concluded that the MATLAB and VHDL
simulations show a bit true (and at the 
STATES level also a cycle true) 
correspondence. 
 

Figure 15.   Part of th e waveform output of 
the LWDF_5 VHDL design after simulation 
with ModelSim. 
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Figure 16 shows the simulation results corresponding to our previously described errors when using a 
[17 15 0] fixed-point setup. 
From the Resource Map in Figure 13 can be seen that operation V5B is mapped on ALU_1 (and indeed 
in STATE 4 as was also concluded from the MATLAB error). If we zoom in in the Wave window to 
PASS 5 (following the 5th new_sample_s pulse), we notice the error signal going high and the 
erroneous values of o_lp following this PASS. In the timing setup of our testbench this will occur after 
about 2500 ns. 
If we select ‘Add to Wave: Signals in Design’ and search for the signals in STATE 4, we recognize the 
same values as reported by MATLAB. Notice that the result of the addition is registered in STATE 5. 
 
 
 PASS 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1FC02

195D8

1CF1C

1BD51

1D252

00000 08000

00000 016CA 1F4F2 018EE 1F20E

00000 01A19 062F5 1990E 18499

/testbench_lwdf_5/error

/testbench_lwdf_5/a1a_s 1FC02

/testbench_lwdf_5/a1b_s 195D8

/testbench_lwdf_5/a1c_s 1CF1C

/testbench_lwdf_5/a2b_s 1BD51

/testbench_lwdf_5/a2c_s 1D252

/testbench_lwdf_5/clk_s

/testbench_lwdf_5/new_sample_s

/testbench_lwdf_5/reset_s

/testbench_lwdf_5/inp_s 00000 08000

/testbench_lwdf_5/o_hp_s 00000 016CA 1F4F2 018EE 1F20E

/testbench_lwdf_5/o_lp_s 00000 01A19 062F5

/testbench_lwdf_5/done_s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

state_3 state_4 state_5 state_6 state_7 state_8 state_9 state_done

1BD51 1D252 195D8 1CF1C

11D06 0573D 07FE0 00179 050E1 07EA7 0611B 031DC

00000 0763F 1E0DD 1FEC7 1E11B

op_add op_sub op_add op_sub

08000 0EE14 08159 0D0E1 07FE0 08000 0B1FC 1321C

00000 0763F 07FE0 08000 1FEC7 1E11B 08020 0611B

0573D 08000 16453 00179 050E1 07EA7 0611B 031DC

op_add

07FE0 00B1A 0F004 098C7 08159 0D0E1 0B1FC 1321C

00000 0763F 1E0DD 1FEC7 1E11B 08020 0611B

11D06 07FE0 08159 0D0E1 079A4 08020 0B1FC 1321C

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/done

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/error

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/current_state state_3 state_4 state_5 state_6 state_7 state_8 state_9 state_done

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/mul_1_cle_s

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/mul_1_in1_s 1BD51 1D252 195D8 1CF1C

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/mul_1_in2_s 11D06 0573D 07FE0 00179 050E1 07EA7 0611B 031DC

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/mul_1_out_r 00000 0763F 1E0DD 1FEC7 1E11B

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_cle_s

/

/

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_err_r

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_opc_s op_add op_sub op_add op_sub

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_in1_s 08000 08159 0D0E1 07FE0 08000 0B1FC 1321C

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_in2_s

/

00000 07FE0 08000 1FEC7 1E11B 08020 0611B

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_1_out_r

/

/ 0573D 08000 00179 050E1 07EA7 0611B 031DC

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_cle_s/

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_err_r

/testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_opc_s op_add

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_in1_s 07FE0 00B1A 0F004 098C7 08159 0D0E1 1321C

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_in2_s

/

00000 0763F 1E0DD 1FEC7 1E11B 0611B

testbench_lwdf_5/lwdf_5_lbl/lwdf_5_ssg_lbl/alu_2_out_r

/

/ 11D06 07FE0 08159 0D0E1 079A4 08020 0B1FC

Figure 16.     Simulation with a [17 15 0] bus setup.
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Synthesis results. 
 
 
For synthesis, we need only the files resources_reg.vhd, LWDF_5_SSG_auto.vhd and  
LWDF_5_auto.vhd . 
In Figure 17a to e, the results of a synthesis run for subsequently lower architectural levels is given. 
As target device for the implementation was chosen a Xilinx FPGA from the Spartan family, the 
XC3S2000. The devices from the Spartan family are equipped with dedicated, ready-to-use 18 by 18 bit 
multipliers; the XC3S2000 even offers 40 of them. In fact, these multipliers can also be configured as a 
multiplier with a clocked, clock enabled, resetable registered output, exactly as had been described 
before. The VHDL definition of MUL_R in resources_reg.vhd is such, that these registered versions of 
the MULT18x18 component will be selected by the synthesizer (i.e. by the synthesis tools from 
Synplicity Inc.).  
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Figure 17a.   RTL view of the synthesized LWDF_5 top level 
                        as drawn by Synplify_Pro. 
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Figure 17b.   RTL view of the LWDF_5_SSG-block. 
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Figure 17c.     RTL view of ALU_R. 

Figure 17d.     RTL view of MUL_R. 
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In Table 4, the Resource Usage as reported by the synthesizer for the XC3S2000 implementation is 
given. 
 
 
  
 

                                       Table 4.    listing of a part of the LWDF_5.srr file 
  

 

Scheduling Toolbox f
   
  Resource Usage Report for LWDF_5  
 
  Mapping to part: xc3s2000fg456-4 
  Cell usage: 
  FD              2 uses 
  FDCE            129 uses 
  FDR             8 uses 
  FDRE            141 uses 
  GND             2 uses 
  MULT18X18S      1 use 
  MUXCY_L         36 uses 
  MUXF5           71 uses 
  VCC             1 use 
  XORCY           38 uses 
  LUT2            22 uses 
  LUT3            345 uses 
  LUT4            94 uses 
 
  I/O primitives: 141 
  IBUF           104 uses 
  IBUFG          1 use 
  OBUF           36 uses 
 
  BUFG           1 use 
 
  I/O Register bits:                  0 
  Register bits not including I/Os:   280 (0%)
 
  Block Multipliers: 1 of 40 (2%) 
 
  Global Clock Buffers: 1 of 8 (12%) 
 
 
  Mapping Summary: 
  Total  LUTs: 461 (1%) 
 

or MATLAB   User’s Guide   31



Implementation on FPGA. 
 
 
The VHDL output has been implemented and tested on two Xilinx FPGA platforms, viz.  
• as a ‘slave’ connected to a soft-core AVR processor through a Wishbone bus and with data in/output 

by means of a serial RS2323 connection (AVNET XC3S2000 Development Kit), 
• connected straight between a 14-bit ADC and 14-bit DAC on a Xilinx/Nallatech XtremeDSP Kit 

(Virtex2 family FPGA). 
 
The AVR-Wishbone slave: 
The setup for this test consisted of an adapted ATmega103 VHDL-description from opencores.org, 
which was connected to the filter through a Wishbone bridge, all of them on the XC3S2000 Spartan3 
FPGA on the AVNET Development Kit. The AVR was connected to a pc by means of a serial RS2323 
connection, which was used to send the coefficients and the ‘signal’ –in our case the step-function 
again– to the filter and to show the read-back results in a terminal window. These results were exactly 
as were expected from the previous tests. 
 
The XtremeDSP version: 
In this setup a Xilinx XtremeDSP kit, built around a XC2V3000 Virtex2 FPGA was used.  
The DSPkit is provided with two 14-bit ADC’s and two 14-bit DAC’s, so the filter can be tested in real-
time. Figure 18 shows the measurement results when connected to a HP4195A Network/Spectrum 
Analyzer. To read the measurement data into the pc, a 82357A GPIB/USB interface from Agilent 
Technologies was connected between analyzer and pc, while with the aid of a HPGL interpreter m-file 
the plot was redrawn on the pc from within MATLAB. 
The blue line in Figure 18 should be used as the reference transfer of the system without the filter: 
clearly visible are  
• the effect of the sinc-function (sin(x)/x) due to the sample-and-hold function of the DAC  (a gradual 

roll-off from zero to –3.9 dB at half the sample frequency, no “Zero Stuffing”), and  
• the low-pass influence of the FIR filter in the DAC with a −3 dB cut-off at about 0.45 times the 

sample frequency. 
The system clock on the DSP kit was set to 40 MHz, and the sample clock had been derived from this 
lock by dividing it by 100, resulting in a sample frequency of 400 kHz. c
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Figure 18.   The XtremeDSP implementation measured on a  
                      HP4195A Network/Spectrum analyzer. 
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Epilog. 
 
 
It has been shown that this toolbox can effectively be used to create synthesizable VHDL and 
realizable hardware implementations, while the MATLAB testbench can be used for system level 
debugging and to tune parameters like buswidth and fixed-point setup. 
In the report Implementation of an 18 point IMDCT on FPGA available from 
http://ens.ewi.tudelft.nl/~huib/mtbx, this toolbox has been proven to be useful for the design of an 
imdct in an mp3 decoder. 
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Appendix A.       In-to-Out connections in .cir-files. 
 
 
In circuits with a cascade of delay elements (all or not tapped) –for complying to the cir-file rules–  it 
will be necessary to use I/O ports in between the delay elements. The connecting lines between the 
ports are positioned inside the SSG. This is illustrated in the figures and the (part of the) cir-file 
listing below. 
 
 
 
 T T TT T

x n[ ]

y n[ ]++

c0 c3 c4 c5c1 c2

 
 
 
 
 
 
 
 

++

++

++

++ ++

T T TT T

c0 c2 c4c1 c3 c5

i1 i2 i4i0 i3 i5o0 o1 o3o2 o4

o5

v0 v2 v4v1 v3 v5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assignments to be found in .cir-file: 
      : 
      : 
   o0 = i0; 
   o1 = i1; 
   o2 = i2;        
   o3 = i3; 
   o4 = i4; 
      : 
   i1 = To0; 
   i2 = To1; 
   i3 = To2;       
   i4 = To3; 
   i5 = To4; 
      : 
      : 
   v0 = c0 * i0; 
      :            

 

      : 
   o5 = s5; 
 

34 
 ’straight-through’ connections
  

    
 

definition of delay elements
    ‘other’ assignments
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Appendix B.      MATLAB script for this example … 
 
 
With both the (L)WDF Design Toolbox and the Scheduling Toolbox installed, this simple script is in 
fact enough to replay the example described in this User’s Guide, up to the VHDL simulation and 
synthesis. 
 
 

 
  % only needed if both toolboxes not in the same directory 
  addpath('   <path to L)WDF Design Toolbox>     '); 
 
  Hs = Hs_cauer( 5, 0.1, 45, 'a', fz2fs(0.34), 1 ); 
  Hz = Hs2Hz( Hs ); 
  % Table 1:  Hz.poly_fz' and  Hz.poly_gz' 
 
  yref = filter( Hz.poly_fz, Hz.poly_gz, ones(1,20) ); 
  % Table 2, step response:  yref' 
    
  LWDF = Hs2LWDF( Hs ); 
  coeffs = LWDF2cir(LWDF,'L','LWDF_5.cir'); 
  gen_mTB( 'LWDF_5.cir', 0, 'List', 1,1, 1,2 ); 
 
  % NOTE THAT the sequence of coefficients needed by gen_mTB differs from the  
  % one obtained from LWDF2cir, so reshuffling is needed 
  tmp = coeffs; coeffs(3,:) = tmp(4,:); coeffs(4,:) = tmp(3,:); 
 
  gen_INP( 'LWDF_5\matlab\LWDF_5.INP', [17 15], coeffs, [ 0 0 ones(1,10) ] ); 
 
  addpath('LWDF_5\matlab\'); 
  testbench_LWDF_5_auto( [17 15 1], 0 ); 
  y = read_OUT( 'LWDF_5.OUT', [17 15], 2 ); 
 
  % Notice that the scheduled circuit introduces one additional data-clock delay 
  % by using the sample-clock for both reading and writing 
  maxAbsErr = max( abs(yref(1:10)' - y(4:end,2)) ); 
 
  gen_VHD( 'LWDF_5.cir', [17 15 1], 0, 'List', 1,1, 1,2 ); 
  !copy LWDF_5\matlab\LWDF_5.INP LWDF_5\vhdl\ 
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